Skip to content

Refactor estimators.py to reduce module size #9

Refactor estimators.py to reduce module size

Refactor estimators.py to reduce module size #9

name: Claude Code PR Review
on:
pull_request:
types: [opened, synchronize, reopened]
permissions:
contents: read
pull-requests: write
id-token: write
jobs:
claude-code-review:
runs-on: ubuntu-latest
timeout-minutes: 30
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Run Claude Code Review
uses: anthropics/claude-code-action@v1
with:
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}
claude_args: "--model claude-opus-4-5-20251101 --allowedTools mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*),Read,Glob,Grep"
use_sticky_comment: true
prompt: |
Perform a comprehensive code review of the changes in this PR. Provide actionable feedback with specific line references.
## Review Criteria
### 1. Methodology & Best Practices
- Statistical/econometric correctness for DiD estimators
- Proper implementation of causal inference methods
- Correct standard error calculations and inference
- Appropriate handling of panel data structures
- Valid assumptions and edge case handling
### 2. Code Quality
- Adherence to the sklearn-like API pattern (fit/transform methods)
- Consistent with existing codebase patterns
- Clear, readable code with appropriate naming
- Proper type hints where used in the codebase
- Adequate error handling and input validation
### 3. Technical Debt Minimization
- No duplicated logic that should be extracted
- Appropriate abstractions (not over/under-engineered)
- Clean separation of concerns
- No hardcoded values that should be configurable
- No commented-out code or debug statements
### 4. Testing & Documentation
- Adequate test coverage for new functionality
- Edge cases and error conditions tested
- Tests follow existing patterns in tests/
- Docstrings for public APIs
- Updates to relevant documentation if needed
### 5. Security & Performance
- No potential security vulnerabilities
- Efficient algorithms for large datasets
- Memory-conscious implementations
- No unnecessary dependencies
## Output Format
Provide your review in this structure:
**Overall Recommendation**: [APPROVE / REQUEST CHANGES / COMMENT]
**Summary**: Brief overview of the changes and overall assessment.
**Detailed Findings**:
For each issue found, provide:
- File and line number
- Severity: 🔴 Critical / 🟡 Suggestion / 🟢 Nitpick
- Description of the issue
- Recommended fix
**Positive Observations**: Note any particularly well-implemented aspects.