-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloudness_detector.py
98 lines (83 loc) · 2.9 KB
/
loudness_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from pydub import AudioSegment
import numpy as np
from scipy.fftpack import fft
import matplotlib.pyplot as plt
from flask import Flask, request, render_template
import os
import io
import base64
from threading import Timer
app = Flask(__name__)
def read_audio(file_path):
return AudioSegment.from_file(file_path)
def detect_loudness(audio):
samples = np.array(audio.get_array_of_samples())
rms = np.sqrt(np.mean(samples**2))
return rms
def detect_noise_type(samples, rate):
# FFT and frequency analysis for noise detection
n = len(samples)
freqs = np.fft.fftfreq(n, 1/rate)
fft_values = np.abs(fft(samples))
# Simple detection based on frequency content
if np.mean(fft_values[(freqs > 10) & (freqs < 100)]) > np.mean(fft_values[(freqs > 1000) & (freqs < 2000)]):
return "Pink Noise"
elif np.mean(fft_values[(freqs > 1000) & (freqs < 2000)]) > np.mean(fft_values[(freqs > 10) & (freqs < 100)]):
return "White Noise"
else:
return "Unknown Noise"
def plot_waveform(samples, rate):
time = np.linspace(0., len(samples) / rate, len(samples))
plt.figure(figsize=(10, 4))
plt.plot(time, samples, label="Waveform")
plt.legend()
plt.xlabel("Time [s]")
plt.ylabel("Amplitude")
plt.show()
@app.route('/', methods=['GET', 'POST'])
def upload_file():
if request.method == 'POST':
files = request.files.getlist('file[]')
results = []
for file in files:
audio = read_audio(file)
samples = np.array(audio.get_array_of_samples())
rate = audio.frame_rate
loudness = detect_loudness(audio)
noise_type = detect_noise_type(samples, rate)
# Plot waveform
img = io.BytesIO()
plot_waveform(samples, rate)
plt.savefig(img, format='png')
img.seek(0)
plot_url = base64.b64encode(img.getvalue()).decode()
results.append({
'filename': file.filename,
'loudness': loudness,
'noise_type': noise_type,
'plot_url': plot_url
})
return render_template('results.html', results=results)
return '''
<!doctype html>
<title>Upload Audio Files</title>
<h1>Upload up to 10 MP3 or WAV files</h1>
<form method="POST" enctype="multipart/form-data">
<input type="file" name="file[]" multiple>
<input type="submit" value="Upload">
</form>
'''
@app.route('/shutdown', methods=['POST'])
def shutdown():
shutdown_server()
return 'Server shutting down...'
def shutdown_server():
func = request.environ.get('werkzeug.server.shutdown')
if func is None:
raise RuntimeError('Not running with the Werkzeug Server')
func()
def run_app():
Timer(600, shutdown_server).start() # Shut down the server after 10 minutes
app.run(debug=True)
if __name__ == '__main__':
run_app()