-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathi.tex
202 lines (170 loc) · 5.44 KB
/
i.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
\subsection{Interval types}
\label{subsec:interval}
The interval type has very simple formation rule
and introduction rule:
\[
\vdash \mathbb I~\textbf{type}
\xtag \quad
\vdash \textsf 0 : \mathbb I
\xtag \quad
\vdash \textsf 1 : \mathbb I
\xtag
\]
The underlying model HoTT-I~\cite{HoTT-I} of programming language
Arend~\cite{Arend} uses a different notation
(\textsf{left} instead of \textsf 0, \textsf{right} instead of \textsf 1)
for interval endpoints.
We will still use \textsf 0 and \textsf 1 when talking
about Arend for consistency.
The interval type do not yet have an elimination rule,
so we cannot have a predicate on an interval.
By this definition of interval, the path type can
have the following introduction rule
(definitional equality between term $a$ and $b$
is denoted as $a \equiv b$,
usually implemented via conversion checking or normalization):
\[
\cfrac{
\Gamma \vdash a =_X b~\textbf{type}
\quad
\Gamma, i : \mathbb I \vdash t : X
\quad
(\lambda i. t)~\textsf 0 \equiv a
\quad
(\lambda i. t)~\textsf 1 \equiv b
}{
\Gamma \vdash \lrangle i~t : a =_X b
}
\xtag
\]
Heterogeneously:
\[
\cfrac{
\Gamma \vdash a =_F b~\textbf{type}
\quad
\Gamma, i : \mathbb I \vdash t : F~i
\quad
(\lambda i. t)~\textsf 0 \equiv a
\quad
(\lambda i. t)~\textsf 1 \equiv b
}{
\Gamma \vdash \lrangle i~t : a =_F b
}
\xtag
\]
The above definition is used in Cubical Type Theory~\cite{CCHM,CHM}
(hereafter as CTT), Cartesian Cubical Type
Theory~\cite{CCTT,CCTT2,CHTT} (hereafter as CCTT).
There are three usable implementations of CTT described in~\cite{CHM},
including cubicaltt~\cite{CubicalTT},
mlang~\cite{Mlang} and Cubical Agda~\cite{CubicalAgda}.
For CCTT, there are two, including
redtt~\cite{RedTT} (somehow supersedes and deprecates
\RedPRL~\cite{RedPRL}) and yacctt~\cite{YaccTT},
which implement different variations of CCTT.
The syntax is intentionally made similar to a lambda abstraction,
as the introduction rule is the same as lambda abstraction with
additional two definitional equalities required.
The elimination rule for a path is therefore similar to an application,
with two additional reduction rules -- applying an interval $i$ to
an arbitrary term whose type is known to be a path type $a =_X b$
will reduce to $a$ if $i \equiv \textsf 0$ or $b$ if $i \equiv \textsf 1$:
\[
\cfrac{
\Gamma \vdash p : a =_X b
}{
\Gamma \vdash p~\textsf 0 \equiv a
\quad
\Gamma \vdash p~\textsf 1 \equiv b
}
\xtag \label{eqn:path-app}
\]
Rule~\ref{eqn:path-app} holds even if $p$ is a neutral term,
or a constructor (in case there's path constructors,
introduced in~\cref{subsec:path-hit}).
Therefore constructor application can be redex as well.
CTT and CCTT (and many other variations) have different primitive
operations defined for the interval type,
we discuss this later in~\cref{sec:kan}.
Arend on the other hand defines a primitive operator \textsf{path}
as the introduction rule for path:
\[
\cfrac{
\Gamma \vdash X~\textbf{type}
\quad
\Gamma \vdash t : \mathbb I \rightarrow X
}{
\Gamma \vdash \textsf{path}~t : (t~\textsf 0) =_X (t~\textsf 1)
}
\xtag
\]
The elimination of paths is still similar to CTT or CCTT.
CTT and CCTT do not support creating paths between intervals,
while Arend do.
Thus the following judgement holds in Arend, say,
that there exists a path between \textsf 0 and \textsf 1:
\[
\vdash \textsf{path}~(\lrangle i~i) : \textsf 0 =_{\mathbb I} \textsf 1
\xtag \label{eqn:0-1-arend}
\]
This does not mean that \textsf 0 is identical to \textsf 1.
They are not equivalent definitionally, but propositionally.
Here's the concrete syntax of~\ref{eqn:0-1-arend} in Arend:
\begin{minted}{arend-lexer.py:ArendLexer -x}
\func interval-path : left = right => path (\lam i => i)
\end{minted}
\subsubsection{Interval operations}
Different model defines different operations on the $\mathbb I$ type.
Commonly defined operations are all subsets of de Morgan algebraic operations,
making $\mathbb I$ a bounded distributive lattice.
The three operations (min -- $\wedge$, max -- $\vee$, and involution $\neg$)
extended to the fundamental definition are of the following typing rules:
\[
\cfrac{
\Gamma \vdash i : \mathbb I
\quad
\Gamma \vdash j : \mathbb I
}{
\Gamma \vdash i \wedge j : \mathbb I
\quad
\Gamma \vdash i \vee j : \mathbb I
}
\xtag
\quad
\cfrac{
\Gamma \vdash i : \mathbb I
}{
\Gamma \vdash \neg i : \mathbb I
}
\xtag
\]
The interval themselves satisfy the following definitional equalities,
given $r : \mathbb I, s : \mathbb I$:
\[
\neg \textsf 0 \equiv \textsf 1 \xtag \quad
\neg \textsf 1 \equiv \textsf 0 \xtag
\]
\[
\neg (r \vee s) \equiv (\neg r) \wedge (\neg s) \xtag
\]
\[
\neg (r \wedge s) \equiv (\neg r) \vee (\neg s) \xtag
\]
The involution operation really inverts an interval, so it proves symmetry:
\[
\cfrac{
\Gamma \vdash p : a =_A b
}{
\Gamma \vdash (\lrangle i~p (\neg i)) : b =_A a
} \xtag
\]
We propose that instead of saying it \textit{proves} symmetry,
it's better to say that symmetry is \textit{defined} by involution.
The other two operations, $\wedge$ and $\vee$
(commonly referred to as \textit{connections}),
are relevant to fillers~\cref{subsec:fill}.
We talk about them then.
CTT has these three operations, while CCTT have non of these.
Arend have non of these either.
Another variation of CTT,
the OP model~\cite{OPModel}, defines the connections only.