-
Notifications
You must be signed in to change notification settings - Fork 19
/
siamese_shape_stream1.py
134 lines (120 loc) · 4.54 KB
/
siamese_shape_stream1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from keras.optimizers import Adam
from keras.utils import np_utils
import numpy as np
from config_1 import *
import json
from keras import backend as K
from keras.layers import Dense, Dropout
from keras.models import Model, load_model
from sys import argv
from custom_layers import *
from collections import Counter
import os
#------------------------------------------------------------------------------
def siamese_model(model, input2):
left_input_C = Input(input2)
right_input_C = Input(input2)
convnet_car = model(input2)
encoded_l_C = convnet_car(left_input_C)
encoded_r_C = convnet_car(right_input_C)
inputs = [left_input_C, right_input_C]
# Add the distance function to the network
x = L1_layer([encoded_l_C, encoded_r_C])
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(512, kernel_initializer='normal',activation='relu')(x)
x = Dropout(0.5)(x)
predF2 = Dense(2,kernel_initializer='normal',activation='softmax', name='class_output')(x)
regF2 = Dense(1,kernel_initializer='normal',activation='sigmoid', name='reg_output')(x)
optimizer = Adam(0.0001)
losses = {
'class_output': 'binary_crossentropy',
'reg_output': 'mean_squared_error'
}
lossWeights = {"class_output": 1.0, "reg_output": 1.0}
model = Model(inputs=inputs, outputs=[predF2, regF2])
model.compile(loss=losses, loss_weights=lossWeights,optimizer=optimizer, metrics=kmetrics)
return model
#------------------------------------------------------------------------------
if __name__ == '__main__':
data = json.load(open('%s/dataset_1.json' % (path)))
type1 = argv[1]
name = argv[2]
if name == 'resnet50':
model = resnet50_model
image_size_h_c = 224
image_size_w_c = 224
batch_size = 8
elif name == 'vgg16':
model = vgg16_model
image_size_h_c = 224
image_size_w_c = 224
batch_size = 8
elif name == 'resnet8':
model = resnet8
image_size_h_c = 128
image_size_w_c = 128
elif name == 'resnet6':
model = resnet6
image_size_h_c = 128
image_size_w_c = 128
elif name == 'lenet5':
model = lenet5
image_size_h_c = 128
image_size_w_c = 128
elif name == 'matchnet':
model = matchnet
image_size_h_c = 128
image_size_w_c = 128
elif name == 'mccnn':
model = mccnn
elif name == 'googlenet':
model = GoogLeNet
image_size_h_c = 112
image_size_w_c = 112
batch_size = 32
elif name == 'smallvgg':
model = small_vgg_car
input2 = (image_size_h_c,image_size_w_c,nchannels)
if type1 == 'train':
for k,val_idx in enumerate(keys):
K.clear_session()
idx = fold(keys,k, train=True)
val = data[val_idx]
trn = data[idx[0]] + data[idx[1]]
trnGen = SiameseSequence(trn, train_augs,batch_size=batch_size,input2=input2, type1='car')
tstGen = SiameseSequence(val, test_augs,batch_size=batch_size,input2=input2, type1='car')
siamese_net = siamese_model(model, input2)
f1 = 'model_shape_%s_%d.h5' % (name,k)
#fit model
history = siamese_net.fit_generator(trnGen,
epochs=NUM_EPOCHS,
validation_data=tstGen)
#validate plate model
tstGen2 = SiameseSequence(val, test_augs, batch_size=batch_size,input2=input2, with_paths=True, type1='car')
test_report('validation_shape_%s_%d' % (name,k),siamese_net, tstGen2)
siamese_net.save(f1)
elif type1 == 'test':
folder = argv[3]
for k in range(len(keys)):
idx = fold(keys,k, train=False)
tst = data[idx[0]] + data[idx[1]]
tstGen2 = SiameseSequence(tst, test_augs,batch_size=batch_size,input2=input2, with_paths=True, type1='car')
f1 = os.path.join(folder,'model_shape_%s_%d.h5' % (name, k))
siamese_net = load_model(f1, custom_objects=customs_func)
test_report('test_shape_%s_%d' % (name, k),siamese_net, tstGen2)
elif type1 == 'predict':
results = []
data = json.load(open(argv[3]))
img3 = (process_load(data['img1'], input2)/255).reshape(1,input2[0], input2[1],input2[2])
img4 = (process_load(data['img2'], input2)/255).reshape(1,input2[0], input2[1],input2[2])
X = [img3, img4]
folder = argv[4]
for k in range(len(keys)):
K.clear_session()
f1 = os.path.join(folder,'model_shape_%s_%d.h5' % (name, k))
model = load_model(f1, custom_objects=customs_func)
Y_ = model.predict(X)
results.append(np.argmax(Y_[0]))
print("model %d: %s" % (k+1,"positive" if results[k]==POS else "negative"))
print("final result: %s" % ("positive" if Counter(results).most_common(1)[0][0]==POS else "negative"))