This example is MXNet implementation of CapsNet:
Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules. NIPS 2017
- The current
best test error is 0.29%
andaverage test error is 0.303%
- The
average test error on paper is 0.25%
Log files for the error rate are uploaded in repository.
Install scipy with pip
pip install scipy
Install tensorboard and mxboard with pip
pip install mxboard tensorflow
On Single gpu
python capsulenet.py --devices gpu0
On Multi gpus
python capsulenet.py --devices gpu0,gpu1
Full arguments
python capsulenet.py --batch_size 100 --devices gpu0,gpu1 --num_epoch 100 --lr 0.001 --num_routing 3 --model_prefix capsnet
MXNet version above (1.2.0)
scipy version above (0.19.0)
Train time takes about 36 seconds for each epoch (batch_size=100, 2 gtx 1080 gpus)
CapsNet classification test error on MNIST:
python capsulenet.py --devices gpu0,gpu1 --lr 0.0005 --decay 0.99 --model_prefix lr_0_0005_decay_0_99 --batch_size 100 --num_routing 3 --num_epoch 200
Trial | Epoch | train err(%) | test err(%) | train loss | test loss |
---|---|---|---|---|---|
1 | 120 | 0.06 | 0.31 | 0.0056 | 0.0064 |
2 | 167 | 0.03 | 0.29 | 0.0048 | 0.0058 |
3 | 182 | 0.04 | 0.31 | 0.0046 | 0.0058 |
average | - | 0.043 | 0.303 | 0.005 | 0.006 |
We achieved the best test error rate=0.29%
and average test error=0.303%
. It is the best accuracy and fastest training time result among other implementations(Keras, Tensorflow at 2017-11-23).
The result on paper is 0.25% (average test error rate)
.
Implementation | test err(%) | ※train time/epoch | GPU Used |
---|---|---|---|
MXNet | 0.29 | 36 sec | 2 GTX 1080 |
tensorflow | 0.49 | ※ 10 min | Unknown(4GB Memory) |
Keras | 0.30 | 55 sec | 2 GTX 1080 Ti |