forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_log.py
executable file
·75 lines (65 loc) · 2.82 KB
/
parse_log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/usr/bin/env python
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
parse mxnet output log into a markdown table
"""
import argparse
import sys
import re
parser = argparse.ArgumentParser(description='Parse mxnet output log')
parser.add_argument('logfile', nargs=1, type=str,
help = 'the log file for parsing')
parser.add_argument('--format', type=str, default='markdown',
choices = ['markdown', 'none'],
help = 'the format of the parsed outout')
parser.add_argument('--metric-names', type=str, nargs="+", default = ['accuracy'],
help='names of metrics in log which should be parsed')
args = parser.parse_args()
with open(args.logfile[0]) as f:
lines = f.readlines()
res = [re.compile('.*Epoch\[(\d+)\] Train-'+s+'.*=([.\d]+)') for s in args.metric_names]\
+ [re.compile('.*Epoch\[(\d+)\] Validation-'+s+'.*=([.\d]+)') for s in args.metric_names]\
+ [re.compile('.*Epoch\[(\d+)\] Time.*=([.\d]+)')]
data = {}
for l in lines:
i = 0
for r in res:
m = r.match(l)
if m is not None:
break
i += 1
if m is None:
continue
assert len(m.groups()) == 2
epoch = int(m.groups()[0])
val = float(m.groups()[1])
if epoch not in data:
data[epoch] = [0] * len(res) * 2
data[epoch][i*2] += val
data[epoch][i*2+1] += 1
if args.format == 'markdown':
print("| epoch | " + " | ".join(['train-'+s for s in args.metric_names]) + " | " + " | ".join(['val-'+s for s in args.metric_names]) + " | time |")
print("| --- "*(len(res)+1) + "|")
for k, v in data.items():
print("| %2d | " % (k+1)\
+ " | ".join(["%f" % (v[2*j]/v[2*j+1]) for j in range(2*len(args.metric_names))])\
+ " | %.1f |" % (v[-2]/v[-1]))
elif args.format == 'none':
print("\t".join(['epoch'] + ['train-' + s for s in args.metric_names] + ['val-' + s for s in args.metric_names] + ['time']))
for k, v in data.items():
print("\t".join(["%2d" % (k+1)] + ["%f" % (v[2*j]/v[2*j+1]) for j in range(2*len(args.metric_names))] + ["%.1f" % (v[-2]/v[-1])]))