-
Notifications
You must be signed in to change notification settings - Fork 3
/
slides-padova2018.tex
1257 lines (1073 loc) · 48.9 KB
/
slides-padova2018.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[12pt,utf8,notheorems,compress,t]{beamer}
\usepackage{etex}
\usepackage{pgfpages}
\setbeameroption{show notes on second screen}
\setbeamertemplate{note page}[plain]
\newcommand{\jnote}[2]{\only<#1>{\note{\setlength\parskip{\medskipamount}\justifying\footnotesize#2\par}}}
% Workaround for the issue described at
% https://tex.stackexchange.com/questions/164406/beamer-using-href-in-notes.
\newcommand{\fixedhref}[2]{\makebox[0pt][l]{\hspace*{\paperwidth}\href{#1}{#2}}\href{#1}{#2}}
\usepackage[english]{babel}
\usepackage{mathtools}
\usepackage{booktabs}
\usepackage{stmaryrd}
\usepackage{array}
\usepackage{ragged2e}
\usepackage{multicol}
\usepackage{tabto}
\usepackage{xstring}
\usepackage{ifthen}
\usepackage{soul}\setul{0.3ex}{}
\usepackage[all]{xy}
\xyoption{rotate}
\usepackage{tikz}
\usetikzlibrary{calc,shapes,shapes.callouts,shapes.arrows,patterns,fit,backgrounds,decorations.pathmorphing}
\hypersetup{colorlinks=true}
\usepackage{pifont}
\newcommand{\cmark}{\ding{51}}
\newcommand{\xmark}{\ding{55}}
\DeclareSymbolFont{extraup}{U}{zavm}{m}{n}
\DeclareMathSymbol{\varheart}{\mathalpha}{extraup}{86}
\graphicspath{{images/}}
\usepackage[protrusion=true,expansion=true]{microtype}
\setlength\parskip{\medskipamount}
\setlength\parindent{0pt}
\title{New reduction techniques in commutative algebra driven by logical methods}
\author{Ingo Blechschmidt}
\date{October 24th, 2018}
\useinnertheme[shadow=true]{rounded}
\setbeamerfont{block title}{size={}}
\useinnertheme{rectangles}
\usecolortheme{orchid}
\usecolortheme{seahorse}
\definecolor{mypurple}{RGB}{150,0,255}
\setbeamercolor{structure}{fg=mypurple}
\definecolor{myred}{RGB}{150,0,0}
\setbeamercolor*{title}{bg=myred,fg=white}
\setbeamercolor*{titlelike}{bg=myred,fg=white}
\setbeamercolor{frame}{bg=black}
\usefonttheme{serif}
\usepackage[T1]{fontenc}
\usepackage{libertine}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\M}{\mathcal{M}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\renewcommand{\G}{\mathcal{G}}
\newcommand{\J}{\mathcal{J}}
\newcommand{\GG}{\mathbb{G}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\CC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\aaa}{\mathfrak{a}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\fff}{\mathfrak{f}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\defeqv}{\vcentcolon\equiv}
\newcommand{\Sh}{\mathrm{Sh}}
\newcommand{\GL}{\mathrm{GL}}
\newcommand{\Zar}{\mathrm{Zar}}
\newcommand{\op}{\mathrm{op}}
\newcommand{\Set}{\mathrm{Set}}
\newcommand{\Eff}{\mathrm{Ef{}f}}
\newcommand{\Sch}{\mathrm{Sch}}
\newcommand{\Aff}{\mathrm{Aff}}
\newcommand{\Ring}{\mathrm{Ring}}
\newcommand{\LocRing}{\mathrm{LocRing}}
\newcommand{\LRS}{\mathrm{LRS}}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Spec}{\mathrm{Spec}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\RelSpec}{\operatorname{Spec}}
\renewcommand{\_}{\mathpunct{.}}
\newcommand{\?}{\,{:}\,}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\ull}[1]{\underline{#1}}
\newcommand{\affl}{\ensuremath{{\ull{\AA}^1}}}
\newcommand{\Ll}{\vcentcolon\!\Longleftrightarrow}
\newcommand{\inv}{inv.\@}
\newcommand{\seq}{\vdash_{\!\!\!\vec x}}
\newcommand{\hg}{\mathbin{:}} % homogeneous coordinates
\setbeamertemplate{blocks}[rounded][shadow=false]
\newenvironment{indentblock}{%
\list{}{\leftmargin\leftmargin}%
\item\relax
}{%
\endlist
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{hilblock}{
\begin{center}
\begin{minipage}{9.05cm}
\setlength{\textwidth}{9.05cm}
\begin{actionenv}#1
\def\insertblocktitle{}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\newcommand{\bignumber}[1]{
\renewcommand{\insertenumlabel}{#1}\scalebox{1.5}{\usebeamertemplate{enumerate item}}
}
\newcommand{\bigheart}{\includegraphics{heart}}
\newenvironment{changemargin}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\pointthis}[3]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (#2) {#2};
\node[visible on=#1,overlay,rectangle callout,rounded corners,callout relative pointer={(0.3cm,0.5cm)},fill=blue!20] at ($(#2.north)+(-0.1cm,-1.1cm)$) {#3};
}%
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{varblock}[2]{\begin{varblockextra}{#1}{#2}{}}{\end{varblockextra}}
\newenvironment<>{varblockextra}[3]{
\begin{center}
\begin{minipage}{#1}
\begin{actionenv}#4
{\centering \hil{#2}\par}
\def\insertblocktitle{}%\centering #2}
\def\varblockextraend{#3}
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\varblockextraend
\end{actionenv}
\end{minipage}
\end{center}}
\setbeamertemplate{frametitle}{%
\vskip1.2em%
\leavevmode%
\begin{beamercolorbox}[dp=1ex,center]{}%
\usebeamercolor[fg]{item}{\textbf{{\Large \insertframetitle}}}
\end{beamercolorbox}%
}
\setbeamertemplate{navigation symbols}{}
\newcounter{framenumberpreappendix}
\newcommand{\backupstart}{
\setcounter{framenumberpreappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
\addtocounter{framenumberpreappendix}{-\value{framenumber}}
\addtocounter{framenumber}{\value{framenumberpreappendix}}
}
\newcommand{\mynav}[3]{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex]{}%
\begin{columns}
\begin{column}{0.333\textwidth}
\raggedright
\textcolor{#1}{\qquad\qquad Summary}
\par
\end{column}
\begin{column}{0.333\textwidth}
\centering
\textcolor{#2}{The forcing model}
\par
\end{column}
\begin{column}{0.333\textwidth}
\raggedleft
\textcolor{#3}{Revisiting the test cases \qquad\qquad}
\par
\end{column}
\end{columns}
\end{beamercolorbox}%
}
\newcommand{\insertframeextra}{}
\setbeamertemplate{footline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex,dp=1ex,right,rightskip=1mm,leftskip=1mm]{}%
% \inserttitle
\hfill
\insertframenumber\insertframeextra\,/\,\inserttotalframenumber
\end{beamercolorbox}%
\vskip0pt%
}
\newcommand{\hil}[1]{{\usebeamercolor[fg]{item}{\textbf{#1}}}}
\newcommand{\bad}[1]{\textcolor{red!90}{\textnormal{#1}}}
\begin{document}
\addtocounter{framenumber}{-1}
\setbeamertemplate{headline}{\mynav{gray}{gray}{gray}}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{4.95cm}\includegraphics[width=\paperwidth]{topos-horses}\end{minipage}}
\begin{frame}[c]
\centering
\bigskip
\includegraphics[width=0.4\textwidth]{external-internal-small}
\bigskip
\hil{New reduction techniques in commutative algebra driven by logical methods}
\scriptsize
\textit{-- an invitation --}
\bigskip
Ingo Blechschmidt \\
Università di Verona
\bigskip
Logic Seminar Padova \\
December 5st, 2018
\par
\jnote{1}{We can associate to any reduced ring~$A$ a \emph{forcing
model}~$A^\sim$.
\begin{itemize}
\item The forcing model has the pleasant property that it is a field.
\item Reasoning about it requires that we restrict ourselves to
intuitionistic logic.
\end{itemize}
Details are on the following slides.}
\end{frame}}
\section{Summary}
\setbeamertemplate{headline}{\mynav{black}{gray}{gray}}
\begin{frame}{Summary}
\vspace*{-1em}
\visible<4->{
\begin{changemargin}{-2.0em}{-0.5em}
\begin{itemize}
\item \ \\[-1.2em]\mbox{For any reduced ring~$A$, there is a ring~$A^\sim$ in a certain topos with}
\[ \models \bigl(\forall x\?A^\sim\_ \neg(\exists y\?A^\sim\_ xy = 1) \Rightarrow x = 0\bigr). \]
\item This semantics is sound with respect to intuitionistic logic.
\item \ \\[-1.2em]\mbox{It has uses in classical and constructive commutative
algebra.}
\end{itemize}
\end{changemargin}
}
\vspace*{-1.5em}
\begin{columns}[t]
\begin{column}[t]{0.52\textwidth}
\centering
\begin{varblock}{\textwidth}{A baby example}
\justifying
Let~$M$ be an injective matrix with more columns than rows over a
reduced ring~$A$.
Then~$1 = 0$ in~$A$.
\end{varblock}
\vspace*{-0.5em}
\only<1>{
\scalebox{0.8}{$\begin{pmatrix}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{pmatrix}$}
}
\visible<2->{
\justifying
\textbf{Proof.} \bad{Assume not.} Then there is a \bad{minimal
prime ideal} $\ppp \subseteq A$. The matrix is injective over the \bad{field}~$A_\ppp = A[(A
\setminus \ppp)^{-1}]$; contradiction to basic linear algebra.
}
\end{column}
\begin{column}[t]{0.46\textwidth}
\centering
\begin{varblock}{\textwidth}{Generic freeness\phantom{p}}
\justifying
Generically, any finitely generated module over a reduced ring
is free.\phantom{g}
\end{varblock}
\vspace*{-0.5em}
\only<1-2>{{
\scriptsize\raggedright
(A ring is reduced iff $x^n=0$ implies $x=0$.)
\par
}}
\only<1-2>{\includegraphics[width=0.73\textwidth]{generic-freeness}}
\visible<3->{
\justifying
\textbf{Proof.} See \href{https://stacks.math.columbia.edu/tag/051Q}{[Stacks Project]}.
}
\end{column}
\end{columns}
\jnote{1}{The two displayed statements are trivial for fields. It is
therefore natural to try to reduce the general situation to that of fields.}
\jnote{2}{The displayed proof, which could have been taken from any
standard textbook on commutative algebra, succeeds in this reduction
by employing proof by contradiction and minimal prime ideals. However, this way
of reducing comes at a cost: It requires the Boolean Prime Ideal Theorem
(for ensuring the existence of a prime ideal and for ensuring that stalks at
minimal prime ideals are fields) and even the full axiom of choice (for
ensuring the existence of a minimal prime ideal).
We should hope that such a simple statement admits a more informative,
explicit, computational proof not employing transfinite methods: There should
be an explicit method for
transforming the given conditional equations expressing injectivity into the
equation~$1 = 0$. And indeed there is: Beautiful constructive proofs can
be found in Richman's note on
\fixedhref{https://www.ams.org/journals/proc/1988-103-04/S0002-9939-1988-0954974-5/S0002-9939-1988-0954974-5.pdf}{nontrivial
uses of trivial rings} and in the
\fixedhref{https://arxiv.org/abs/1605.04832}{recent textbook by Lombardi and
Quitté} on constructive commutative algebra.
The new reduction technique presented in this talk provides a way of
performing the reduction in an entirely constructive manner, avoiding the
axiom of choice. If so desired, resulting topos-theoretic proofs can be
unwound to yield fully explicit, topos-free, direct proofs.}
\jnote{3}{The baby example demonstrates that the reduction technique of this
talk is of interest to constructive commutative algebra. What about classical
commutative algebra? This is what the second example aims at.
Grothendieck's generic freeness lemma is an important theorem in algebraic
geometry, where it is usually stated in the following geometric form:
\vspace*{-1.2em}
\begin{indentblock}Let~$X$ be a reduced scheme. Let~$\B$ be
an~$\O_X$-algebra of finite type. Let~$\M$ be a~$\B$-module of finite type.
Then over a dense open,
\begin{enumerate}
\item[(a)] $\B$ and~$\M$ are locally free as sheaves of~$\O_X$-modules,
\item[(b)] $\B$ is of finite presentation as a sheaf of~$\O_X$-algebras and
\item[(c)] $\M$ is of finite presentation as a sheaf of~$\B$-modules.
\end{enumerate}\end{indentblock}
\vspace*{-1.2em}
All previously known proofs proceed in a series of reduction steps,
finally culminating in the case where~$A$ is a Noetherian integral domain.
They are somewhat convoluted (spanning several pages) and require nontrivial
prerequisites in commutative algebra.
Using the new reduction technique, there is a short (one-paragraph) and
conceptual proof of Grothendieck's generic freeness lemma. It is constructive
as a bonus; and if desired, one can unwind the resulting proof to obtain a
constructive proof which doesn't reference topos theory. The proof obtained
in this way is still an improvement on the previously known proofs, requiring
no advanced prerequisites in commutative algebra, and takes
\fixedhref{https://arxiv.org/abs/1807.01231}{about a page}.}
\jnote{4}{Instead of passing from a given ring~$A$ to one of its
stalks~$A_\ppp$ or quotient rings~$A/\aaa$, the reduction technique presented
in this talk passes from~$A$ to a \emph{forcing model}~$A^\sim$.
Unlike stalks or quotient rings, which are honest rings, the forcing
model~$A^\sim$ is not a ring in the strict sense of the word: It doesn't
have an underlying \emph{set} of elements, but instead an underlying
\emph{sheaf} of elements. It is a \emph{ring object} in a certain category,
the \emph{little Zariski topos} of~$A$. But as long as we restrict to intuitionistic
reasoning, this difference is immaterial. A metatheorem displayed on a later
slide states that any intuitionistic theorem about
rings applies to~$A^\sim$ just as if~$A$ were a proper, ordinary ring.
Studying~$A^\sim$ is in fact the same as studying~$A$ from a certain
different, \emph{local} point of view. The precise meaning of this statement
will be explained on slide~3.}
\jnote{5}{Intuitionistic logic is the same as classical logic, but without:
\vspace*{-1em}
\begin{itemize}
\item the law of excluded middle: $\varphi \vee \neg\varphi$ \\[-1.5em]
\item the law of double negation elimination: $\neg\neg\varphi \Rightarrow \varphi$ \\[-1.5em]
\item the axiom of choice
\end{itemize}
\vspace*{-1em}
If one is unfamiliar with constructive mathematics, then doing without these
three laws seems unmotivated, rather peculiar and overtly restrictive. Here, the
restriction to intuitionistic logic is not by some philosophical choice.
Rather, it's by mathematical necessity. It's just a fact that in general, the
laws of classical logic don't apply to~$A^\sim$. (Assuming a classical
metatheory and assuming~$A$ to be Noetherian, they do iff~$A$ is of Krull
dimension~$\leq 0$.)
Luckily, vast amounts of commutative algebra work in the intuitionistic
setting, as for instance evidenced by the recent 1000$^+$-page
\fixedhref{https://arxiv.org/abs/1605.04832}{textbook by
Lombardi and Quitté}. This claim extends to statements which are usually
proven using maximal ideals or minimal ideal prime ideals and hence require
Zorn's lemma. Indeed, the technique presented in this talk allows to
constructivize some results of this kind.
Background on constructive mathematics can for instance be found in a
\fixedhref{https://video.ias.edu/members/1213/0318-AndrejBauer}{talk by
Andrej Bauer}
(\fixedhref{https://www.ams.org/journals/bull/2017-54-03/S0273-0979-2016-01556-4/S0273-0979-2016-01556-4.pdf}{written
notes}). The standard proof that~$\sqrt{2}$ is not rational is perfectly fine
in constructive mathematics.}
\end{frame}
\section{The forcing model}
\setbeamertemplate{headline}{\mynav{gray}{black}{gray}}
\begin{frame}{Motivating the semantics}
\centering
\begin{varblockextra}{0.8\textwidth}{}{
\hil{Examples:}\phantom{Non-}\,\!\ \ $k,\ k[[X]],\ \CC\{z\},\ \ZZ_{(p)}$ \\[0.2em]
\hil{Non-examples:}\ \ $\ZZ,\ k[X],\ \ZZ/(pq)$
}
\justifying
A ring is \hil{local} iff~$1 \neq 0$ and if~$x + y = 1$ implies that~$x$ is
invertible or~$y$ is invertible.
\end{varblockextra}
\begin{varblockextra}{0.8\textwidth}{}{
Let~$x + y = 1$ in a ring~$A$.
Then:
\begin{itemize}
\item The element $x$ is invertible in~$A[x^{-1}]$.
\item The element $y$ is invertible in~$A[y^{-1}]$.
\end{itemize}
(Recall~$A[f^{-1}] = \bigl\{ \frac{u}{f^n} \,|\, u \in A, n \in \NN \bigr\}$.)
}
\hil{Locally,} any ring is local.
\end{varblockextra}
\jnote{1}{In topos theory, we have lots of experience of \emph{changing
universes} in order to \emph{force} some statements to become true. However,
because the field condition we are aiming at is not a \emph{geometric
sequent}, these techniques do not work here. Hence we'll take it more slowly
and only devise a semantics which forces the given ring to be local.
The displayed definition of a local ring is, in the presence of the axiom of
choice, equivalent to the more common one (ring with exactly one maximal
ideal). In constructive mathematics, the displayed definition usually works
better.
The key insight is that \emph{locally} (in the sense of topology/geometry),
any ring is a local ring. That is, we may pretend that any given ring is
local if we are prepared to pass to numerous localizations during the course
of an argument. The semantics displayed on the next slide manages this
localization-juggling for us.
By~$A[f^{-1}]$, we mean the localization of~$A$ away from~$f$. This
construction makes sense even if~$f$ is a zero divisor, in which
case~$A[f^{-1}]$ is the zero ring.}
\end{frame}
\begin{frame}{The Kripke--Joyal semantics}
\small\vspace*{-0.7em}
\only<1>{Let~$A$ be a ring (commutative, with unit). We recursively define
\[ f \models \varphi \quad \text{(``$\varphi$ holds away from the zeros of~$f$'')} \]
for elements~$f \in A$ and statements~$\varphi$. Write
``$\models \varphi$'' to mean~$1 \models \varphi$.}
\only<1>{\[ \renewcommand{\arraystretch}{1.25}\begin{array}{@{}l@{\quad}c@{\quad}l@{}}
f \models \top &\text{is}& \text{true} \\
f \models \bot &\text{iff}& \text{$f$ is nilpotent} \\
f \models x = y &\text{iff}& x = y \in A[f^{-1}] \\
f \models \varphi \wedge \psi &\text{iff}&
\text{$f \models \varphi$ and $f \models \psi$} \\
f \models \varphi \vee \psi &\text{iff}&
\text{there exists a partition~$f^n = fg_1 + \cdots + fg_m$ with,} \\
&&\quad\text{for each~$i$, $fg_i \models \varphi$ or $fg_i \models \psi$} \\
f \models \varphi \Rightarrow \psi &\text{iff}&
\text{for all~$g \in A$, $fg \models \varphi$ implies $fg \models \psi$} \\
f \models \forall x\?A^\sim\_ \varphi &\text{iff}&
\text{for all~$g \in A$ and all $x_0 \in A[(fg)^{-1}]$, $fg \models \varphi[x_0/x]$} \\
f \models \exists x\?A^\sim\_ \varphi &\text{iff}&
\text{there exists a partition~$f^n = fg_1 + \cdots + fg_m$ with,} \\
&&\quad\text{for each~$i$, $fg_i \models \varphi[x_0/x]$ for some~$x_0 \in A[(fg_i)^{-1}]$}
\end{array} \]}
\only<2->{Write ``$\models \varphi$'' to mean~$1 \models \varphi$.}
\only<2->{\[ \renewcommand{\arraystretch}{1.25}\begin{array}{@{}l@{\quad}c@{\quad}l@{}}
f \models x = y &\text{iff}& x = y \in A[f^{-1}] \\
f \models \varphi \wedge \psi &\text{iff}&
\text{$f \models \varphi$ and $f \models \psi$} \\
f \models \varphi \vee \psi &\text{iff}&
\text{there exists a partition~$f^n = fg_1 + \cdots + fg_m$ with,} \\
&&\quad\text{for each~$i$, $fg_i \models \varphi$ or $fg_i \models \psi$}
\end{array} \]}
\jnote{1}{The clause for~``$\vee$'' is made exactly in such a way as to
ensure, if~$x + y = 1$, that~$1 \models ((\exists z\?A^\sim\_ xz = 1) \vee
(\exists z\?A^\sim\_ yz = 1))$.
The definition of the semantics is reminiscent of Kripke and Beth models.
Indeed, it is a fragment of the Kripke--Joyal semantics of the \emph{internal
language of a topos}, and this general semantics encompasses Kripke and Beth
models as special cases.}
\jnote{2}{The soundness lemma states: If~$f \models \varphi$, and
if~$\varphi$ intuitionistically entails a further statement~$\psi$, then
also~$f \models \psi$. In this way we can \emph{reason} with the forcing
model, similarly as if~$A^\sim$ would actually exist as a ring instead of
merely being a convenient syntactic fiction.
If we want~$A^\sim$ to actually exist, not just as a figure of speech, then
we have to broaden our notion of existence and accept ring objects in
toposes. More on this on the next slide.
The four lemmas displayed on this slide, as well as all the claims on
further slides, can be proven in very weak intuitionistic metatheories.}
\jnote{3}{Irrespective of whether~$A$ is a local ring, its mirror
image~$A^\sim$ is always a local ring (that is, the axioms of what it means
to be a local ring hold under the translation rules specified by the
semantics). A basic application of this forcing model are local-to-global
principles. For instance:
\begin{itemize}\justifying
\item The statement ``the kernel of a surjective matrix over a local ring
is finite free'' admits a constructive proof. It therefore holds
for~$A^\sim$. Its external meaning is that the kernel of a surjective
matrix~$M$ over~$A$ is finite locally free (there exists a partition~$1 =
f_1 + \cdots + f_n$ such that for each~$i$, the localized
module~$(\operatorname{ker} M)[f_i^{-1}]$ is finite free).
\item The ring~$A$ is a Prüfer domain if and only if~$A^\sim$ is a Bézout
domain. Therefore any constructive theorem about Bézout domains entails a
corresponding theorem about Prüfer domains. Bézout domains are quite rare,
while Prüfer domains abound (for instance the ring of integers of any
number field is a Prüfer domain, even constructively so).
\end{itemize}}
\pause
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{varblock}{\textwidth}{Monotonicity}{}
If~$f \models \varphi$, then also~$fg \models \varphi$.
\end{varblock}
\end{column}
\begin{column}{0.50\textwidth}
\begin{varblock}{\textwidth}{Locality}{}
\justifying
If~$f^n = fg_1 + \cdots + fg_m$ and~$fg_i \models \varphi$ for all~$i$,
then also~$f \models \varphi$.
\end{varblock}
\end{column}
\end{columns}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{varblock}{\textwidth}{Soundness\phantom{p}}{}
If~$\varphi \vdash \psi$ and~$f \models \varphi$,
then~$f \models \psi$.
\end{varblock}
\end{column}
\begin{column}{0.50\textwidth}
\begin{varblock}{\textwidth}{Forced properties}{}
$\models \speak{$A^\sim$ is a local ring}$.
\end{varblock}
\end{column}
\end{columns}
\end{frame}
\tikzstyle{topos} = [draw=mypurple, very thick, rectangle, rounded corners, inner sep=5pt, inner ysep=10pt]
\tikzstyle{title} = [fill=mypurple, text=white]
\input{images/primes.tex}
%\renewcommand{\sieve}[2]{SIEVE}
%\renewcommand{\fakesieve}[2]{SIEVE}
\newcommand{\drawbox}[4]{
\node[topos, #4] [fit = #3] (#1) {};
\node[title] at (#1.north) {#2};
}
\newcommand{\muchstuff}{
\includegraphics[height=3em]{filmat}
\scalebox{0.5}{\sieve{14}{2}}
}
\newcommand{\muchstuffplaceholder}{
\includegraphics[height=3em]{filmat-placeholder}
\scalebox{0.5}{\fakesieve{14}{2}}
}
\newcommand{\fewstuff}{
\includegraphics[height=3em]{filmat}
\scalebox{0.5}{\sieve{7}{2}}
}
\begin{frame}[fragile]{A universal property}
The displayed semantics is the first-order fragment of the \hil{higher-order
internal language} of the \hil{little Zariski topos}.
\begin{tikzpicture}
\node[scale=0.4] (objs-set1) at (-4.0,-2.5) {
\only<1->{\fewstuff}
};
\node[scale=0.4] (objs-eff1) at (4.0,-2.5) {
\only<1->{\fewstuff}
};
\node[scale=0.4] (objs-sh1) at (0,-2.5) {
\only<1->{\fewstuff}
};
\node (prop-set1) [below of=objs-set1, align=left, inner ysep=0pt] {
The usual laws \\
of logic hold.
};
\node (prop-eff1) [below of=objs-eff1, align=left, inner ysep=0pt] {
Every function \\
is computable.
};
\node (prop-sh1) [below of=objs-sh1, align=left, inner sep=0pt] {
The intermediate \\
value theorem fails.
};
\begin{scope}
\drawbox{set1}{$\mathrm{Set}$}{(objs-set1) (prop-set1)}{}
\end{scope}
\begin{scope}
\drawbox{eff1}{Ef{}f}{(objs-eff1) (prop-eff1)}{tape}
\end{scope}
\begin{scope}
\drawbox{sh1}{$\mathrm{Sh}\, X$}{(objs-sh1) (prop-sh1)}{draw=none}
\def\R{8pt}
\begin{pgfonlayer}{background}
\draw[decoration={bumps,segment length=8pt}, decorate, very thick, draw=mypurple]
($(sh1.south west) + (\R, 0)$) arc(270:180:\R) --
($(sh1.north west) + (0, -\R)$) arc(180:90:\R) --
($(sh1.north east) + (-\R, 0)$) arc(90:0:\R) --
($(sh1.south east) + (0, \R)$) arc(0:-90:\R) --
cycle;
\end{pgfonlayer}
\end{scope}
\end{tikzpicture}
\jnote{1}{A topos is a special kind of category. Every topos has an
associated \emph{internal language} which can be used to do mathematics
\emph{internally to the topos}.
The prototypical example of a topos is the category~$\Set$. Doing mathematics
internally to~$\Set$ amounts to just doing mathematics in the usual sense.
A primer on the topos-theoretic landscape is contained in
\fixedhref{https://rawgit.com/iblech/internal-methods/master/slides-leipzig2018.pdf}{these
slides}. These slides also explain the geometric reason why the intermediate value
theorem fails in most toposes of sheaves, and why in the ef{}fective topos
any function~$\NN \to \NN$ is computable.}
\jnote{2-}{A free local ring~$A'$ over~$A$ is a local ring~$A'$
together with a ring homomorphism~$A \to A'$ such that any ring
homomorphism~$A \to R$ to a local ring uniquely factors over a local ring
homomorphism~$A' \to R$. (A ring homomorphism is \emph{local} iff it reflects
invertibility.)
Assuming the Boolean Prime Ideal Theorem, one can show that there is a free
local ring over~$A$ if and only if~$A$ has exactly one prime ideal. In this
case~$A$ is already local, and we can take~$A' \defeq A$. If we want every
ring to possess a free local ring over it, we need to accept ring objects of
different toposes than~$\Set$.
The little Zariski topos contains the \emph{generic filter} of~$A$.
Localizing~$A$ at this filter yields the desired free local ring. It is
precisely what was called~$A^\sim$ before. It is also known as the structure
sheaf of~$\Spec(A)$.}
\pause
Is there a \hil{free local ring}~$A \to A'$ over~$A$?
\begin{columns}[t]
\begin{column}{0.4\textwidth}
$\xymatrix{
A \ar[rd] \ar[rrr]^\alpha &&& {\substack{\phantom{\text{local}}\\\text{\normalsize$R$}\\\text{local}}} \\
& {\substack{\text{\normalsize$A'$}\\\text{local}}} \ar@{-->}_[@!35]{\text{local}}[rru]
}$
\end{column}
\begin{column}{0.50\textwidth}
\small\justifying
For a fixed ring~$R$, the localization $A' \defeq A[S^{-1}]$ with $S \defeq
\alpha^{-1}[R^\times]$ would do the job. ($S$ is a \emph{filter}.)
\medskip
Hence we need the \hil{generic filter}.
\end{column}
\end{columns}
\end{frame}
\begin{frame}{The little Zariski topos}
\small
Let~$A$ be a ring. Its \hil{little Zariski topos} is equivalently
\vspace*{-0.5em}
\begin{enumerate}
\item the classifying locale of \hil{prime filters} of $A$, \\[-1.2em]
\item the classifying topos of \hil{local localizations} of $A$, \\[-1.2em]
\item the locale given by the frame of \hil{radical ideals} of $A$, \\[-1.2em]
\item the topos of sheaves over the poset $A$ with $f \preceq g$ iff $f \in \sqrt{(g)}$ and with $(f_i \to f)_i$ deemed covering iff $f \in \sqrt{(f_i)_i}$ or \\[-1.2em]
\item the topos of sheaves over $\Spec(A)$.
\end{enumerate}
Its associated topological space of points is the \hil{classical spectrum}
\[ \{ \fff \subseteq A \,|\, \text{$\fff$ prime filter} \} + \text{Zariski topology}. \]
It has \hil{enough points} if the Boolean Prime Ideal Theorem holds.
\scriptsize
Prime ideal:\, $0 \in \ppp$;\, $x \in \ppp \wedge y \in \ppp \Rightarrow x+y \in \ppp$;\, $1 \not\in \ppp$;\, $xy \in \ppp \Leftrightarrow x \in \ppp \vee y \in \ppp$
Prime filter:\, $0 \not\in \fff$;\,\,
$x+y \in \fff \Rightarrow x \in \fff \vee y \in \fff$;
\hspace*{0.5pt}\,\,
$1 \in \fff$;\,
$xy \in \fff \Leftrightarrow x \in \fff \wedge y \in \fff$
\jnote{1}{Any geometric theory has a \emph{classifying topos} which contains
the \emph{generic model} of that theory (any model in any topos is uniquely
the pullback of the generic one); if the theory under consideration is
propositional (doesn't have any sorts), then its classifying topos can be
chosen to be the topos of sheaves over a locale. One can also give a direct
account of classifying locales, as a pedagogical stepping stone to the full
theory of classifying toposes.
The slide contains a small lie: The classical definition of the spectrum of a
ring is via the set of prime ideals of~$A$, not filters. If the law of
excluded middle is available, there is no difference between these
definitions since the complement of a prime ideal is a filter and vice
versa.
One can also consider the classifying locale of prime ideals of~$A$.
Its associated topological space of points is the set of prime ideals
of~$A$ equipped with the \emph{constructible topology}.
In an intuitionistic (but still impredicative) context, any of the
(generalized) spaces of items~1--4 can be adopted as sensible definitions of
the spectrum. Item~5 is then a tautology. The classical definition of
the spectrum as a topological space doesn't work very well, because verifying
the universal property one expects of it requires the Boolean Prime Ideal
Theorem. Most dramatically, in some toposes there are rings which are not
trivial yet have neither prime ideals nor filters. The classical definition
yields in this case the empty space.}
\end{frame}
\begin{frame}{Investigating the forcing model}
% Let~$A$ be a reduced commutative ring ($x^n = 0 \Rightarrow x = 0$).
\small
The \hil{little Zariski topos} of a ring~$A$ is equivalently
\vspace*{-0.5em}
\begin{itemize}
\item the topos of sheaves over~$\Spec(A)$, \\[-1.9em]
\item the locale given by the frame of radical ideals of~$A$, \\[-1.9em]
% \item the classifying topos of local localizations of~$A$ or
\item the classifying locale of filters of~$A$
\end{itemize}
\vspace*{-0.5em}
and contains a \hil{mirror image} of~$A$, the sheaf of rings $A^\sim$.
\vspace*{-1.9em}
\begin{columns}[t]
\begin{column}{0.5\textwidth}
\begin{varblock}{\textwidth}{}
\justifying
Assuming the Boolean Prime Ideal Theorem, a first-order
formula ``$\forall \ldots \forall\_ (\cdots \Longrightarrow \cdots\!\,)$'',
where the two subformulas may not contain~``$\Rightarrow$'' and~``$\forall$'',
holds for~$A^\sim$ iff it holds for all stalks~$A_\ppp$.
\end{varblock}
\vspace*{-2em}
\begin{varblock}{\textwidth}{}
$A^\sim$ inherits any property of~$A$ which is
\hil{localization-stable}.
\end{varblock}
\end{column}
\begin{column}{0.5\textwidth}
\vspace*{1.7em}
If~$A$ is reduced ($x^n = 0 \Rightarrow x = 0$):
\vspace*{-0.9em}
\setbeamercolor{block body}{bg=red!30}
\setbeamercolor{structure}{fg=purple}
\begin{varblock}{\textwidth}{}
$A^\sim$ is a \hil{field}.
$A^\sim$ has \hil{$\boldsymbol{\neg\neg}$-stable equality}.
\mbox{$A^\sim$ is \hil{anonymously Noetherian}.}\\[-1.2em]
\end{varblock}
\end{column}
\end{columns}
\jnote{1}{For working with~$A^\sim$, it's important to know how properties
of~$A$ relate to properties of~$A^\sim$.
The first displayed metatheorem justifies that, to a first approximation, the
forcing model~$A^\sim$ is a reification of all the stalks of~$A$ into a
single coherent entity. But crucially, this slogan is only correct for
properties which can be put in the displayed syntactical form (called
\emph{geometric sequents}). The reductive power of passing from~$A$
to~$A^\sim$ results from surprising non-geometric sequents which are
satisfied by~$A^\sim$ and not shared by~$A$, its localizations or its
quotients.
A slight generalization of the second metatheorem soups up a number of basic
lemmas of algebraic geometry, there stated in geometric language. For
instance, if~$M$ is finitely generated, then~$M^\sim$ is of finite type.
If~$M$ is finitely presented, then~$M^\sim$ is of finite presentation. If~$M$
is coherent, then~$M^\sim$ is coherent.}
\jnote{2}{Surprisingly and significantly, in case that~$A$ is reduced, there
are a number of non-geometric sequents validated by~$A^\sim$. These are
unique features of the forcing model.
$A^\sim$ is a field in the sense that zero is the only
noninvertible element.
$A^\sim$ has~$\neg\neg$-stable equality in the sense that
\[ \models \forall x\?A^\sim\_ \forall y\?A^\sim\_ \neg\neg(x = y) \Rightarrow x = y. \]
Classically, every set has~$\neg\neg$-stable equality; intuitionistically,
this is a special property of some sets. It's quite useful, as some theorems
of classical commutative algebra can only be proven intuitionistically when
weakened by double negation. The stability then allows, in some cases, to
obtain the original conclusion.
$A^\sim$ is \emph{anonymously Noetherian} in the sense that any of its ideals is
\mbox{\emph{not not}} finitely generated. A philosophically-motivated
constructivist might be offended by this notion, since it runs counter to the
maxim that constructive mathematics should be informative, telling us only
that there can't not be finite generating families. However, in the forcing
context it is a useful notion: Hilbert's basis theorem holds for it, and it
can be put to good use in the proof of (the general case of) Grothendieck's
generic freeness lemma.}
\jnote{3}{The field property was already observed in the 1970s
by Mulvey, but apparently back then its significance for applications was
overlooked and no deeper reason for this property was known. We now know
that it's a shadow of a forced higher-order property whose external translation
expresses that~$A^\sim$ is quasicoherent (details are in Section~3.3 of
\fixedhref{https://rawgit.com/iblech/internal-methods/master/notes.pdf}{these
notes}).}
\jnote{4}{Some properties of the forcing model, which are easy to state and
prove as properties about~$A^\sim$, have quite complex meanings when
unravelled to refer directly to~$A$. In this way the forcing model unlocks
observations which might otherwise be too unwieldy to manage.}
\visible<3->{\begin{tikzpicture}[overlay]
\draw[fill=white, draw=white, opacity=0.85] (-1,0) rectangle (\paperwidth,8.0);
\node[anchor=south west,inner sep=0] (image) at (0,1.0) {\vbox{
\only<3>{
\centering
\includegraphics[width=0.9\textwidth]{tierney-on-the-spectrum-of-a-ringed-topos} \\
\footnotesize
Miles Tierney. On the spectrum of a ringed topos. 1976.
}
\only<4>{
\begin{varblock}{\textwidth}{}
The external meaning of
\[
\models
\speak{$A^\sim[X_1,\ldots,X_n]$ is anonymously Noetherian}
\]
is:
\medskip
\begin{indentblock}
For any element~$f \in A$ and any (not necessarily quasicoherent) sheaf of
ideals~$\J \hookrightarrow A^\sim[X_1,\ldots,X_n]|_{D(f)}$: If
\begin{indentblock}
for any element~$g \in A$ the condition that
\begin{indentblock}
the sheaf~$\J$ is of finite type on~$D(g)$
\end{indentblock}
implies that~$g = 0$,
\end{indentblock}
then~$f = 0$.
\end{indentblock}
\end{varblock}
\vspace*{-2em}
}
}};
\end{tikzpicture}}
\end{frame}
\renewcommand{\insertframeextra}{}
\section{Revisiting the test cases}
\setbeamertemplate{headline}{\mynav{gray}{gray}{black}}
\begin{frame}{Revisiting the test cases}
\vspace*{-1em}
Let~$A$ be a reduced commutative ring ($x^n = 0 \Rightarrow x = 0$). \\
Let~$A^\sim$ be its mirror image in the little Zariski topos.
\begin{columns}[t]
\begin{column}[t]{0.48\textwidth}
\centering
\scalebox{0.5}{$\begin{pmatrix}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{pmatrix}$}
\vspace*{-0.5em}
\begin{varblock}{\textwidth}{A baby example}
\justifying
Let~$M$ be an injective matrix over~$A$ with more columns than rows.
Then~$1 = 0$ in~$A$.
\end{varblock}
\justifying
\textbf{Proof.} $M$ is also injective as a matrix over~$A^\sim$.
Since~$A^\sim$ is a field, this is a contradiction by basic linear
algebra. Thus~$\models \bot$. This amounts to~$1 = 0$ in~$A$.
\end{column}
\begin{column}[t]{0.57\textwidth}
\centering
\includegraphics[height=1.9em]{generic-freeness}
\vspace*{-0.5em}
\begin{varblock}{\textwidth}{Generic freeness\phantom{p}}
\justifying
Let~$M$ be a finitely generated~$A$-module.
If~$f = 0$ is the only element of~$A$ such that~$M[f^{-1}]$ is a
free~$A[f^{-1}]$-module, then~$1 = 0$ in~$A$.
\end{varblock}
\vspace*{-0.1em}
\justifying
\textbf{Proof.} The claim amounts to \mbox{$\models
\text{``$M^\sim$}$}$\text{
is \hil{not not} free''}$. Since~$A^\sim$ is a field, this follows from
basic linear algebra.
\end{column}
\end{columns}