-
Notifications
You must be signed in to change notification settings - Fork 3
/
slides-antwerpen2022.tex
732 lines (631 loc) · 24 KB
/
slides-antwerpen2022.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
\documentclass[11pt,utf8,notheorems,compress,t]{beamer}
\usepackage{etex}
\usepackage{xspace}
\usepackage{wrapfig}
\usepackage{pgfpages}
%\setbeameroption{show notes on second screen}
\setbeamertemplate{note page}[plain]
\newcommand{\jnote}[2]{\only<#1>{\note{\setlength\parskip{\medskipamount}\justifying\footnotesize#2\par}}}
%\newcommand{\jnote}[2]{}
% Workaround for the issue described at
% https://tex.stackexchange.com/questions/164406/beamer-using-href-in-notes.
\newcommand{\fixedhref}[2]{\makebox[0pt][l]{\hspace*{\paperwidth}\href{#1}{#2}}\href{#1}{#2}}
\usepackage[english]{babel}
\usepackage{graphbox}
\usepackage{mathtools}
\usepackage{booktabs}
\usepackage{stmaryrd}
\usepackage{array}
\usepackage{ragged2e}
\usepackage{multicol}
\usepackage{tabto}
\usepackage{xstring}
\usepackage{ifthen}
\usepackage[normalem]{ulem}
\usepackage[all]{xy}
\xyoption{rotate}
\usepackage{tikz}
\usetikzlibrary{calc,shapes,shapes.callouts,shapes.arrows,patterns,fit,backgrounds,decorations.pathmorphing,positioning}
\hypersetup{colorlinks=true}
\usepackage{pifont}
\newcommand{\cmark}{\ding{51}}
\newcommand{\xmark}{\ding{55}}
\DeclareSymbolFont{extraup}{U}{zavm}{m}{n}
\DeclareMathSymbol{\varheart}{\mathalpha}{extraup}{86}
\graphicspath{{images/}}
\usepackage[protrusion=true,expansion=true]{microtype}
\setlength\parskip{\medskipamount}
\setlength\parindent{0pt}
\title{Embracing the generic prime ideal: the tale of an enchanting mathematical phantom}
\author{Ingo Blechschmidt}
\date{March 11th, 2022}
\useinnertheme{rectangles}
\setbeamerfont{block title}{size={}}
\useinnertheme{rectangles}
\usecolortheme{orchid}
\usecolortheme{seahorse}
\definecolor{mypurple}{RGB}{150,0,255}
\setbeamercolor{structure}{fg=mypurple}
\definecolor{myred}{RGB}{150,0,0}
\setbeamercolor*{title}{bg=mypurple,fg=white}
\setbeamercolor*{titlelike}{bg=mypurple,fg=white}
\setbeamercolor{frame}{bg=black}
\usefonttheme{serif}
\usepackage[T1]{fontenc}
\usepackage{libertine}
% lifted from https://arxiv.org/abs/1506.08870
\DeclareFontFamily{U}{min}{}
\DeclareFontShape{U}{min}{m}{n}{<-> udmj30}{}
\newcommand\yon{\!\text{\usefont{U}{min}{m}{n}\symbol{'210}}\!}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\C}{\mathcal{C}}
\newcommand{\M}{\mathcal{M}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\G}{\mathcal{G}}
\newcommand{\J}{\mathcal{J}}
\newcommand{\GG}{\mathbb{G}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\CC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\aaa}{\mathfrak{a}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\fff}{\mathfrak{f}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\defeqv}{\vcentcolon\equiv}
\newcommand{\Sh}{\mathrm{Sh}}
\newcommand{\GL}{\mathrm{GL}}
\newcommand{\Zar}{\mathrm{Zar}}
\newcommand{\op}{\mathrm{op}}
\newcommand{\Set}{\mathrm{Set}}
\newcommand{\Eff}{\mathrm{Ef{}f}}
\newcommand{\Sch}{\mathrm{Sch}}
\newcommand{\Aff}{\mathrm{Aff}}
\newcommand{\Ring}{\mathrm{Ring}}
\newcommand{\LocRing}{\mathrm{LocRing}}
\newcommand{\LRS}{\mathrm{LRS}}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Spec}{\mathrm{Spec}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\RelSpec}{\operatorname{Spec}}
\renewcommand{\_}{\mathpunct{.}}
\newcommand{\?}{\,{:}\,}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\affl}{\ensuremath{{\ul{\ensuremath{\AA}}^1}}}
\newcommand{\Ll}{\text{iff}}
\newcommand{\inv}{inv.\@}
\newcommand{\seq}[1]{\mathrel{\vdash\!\!\!_{#1}}}
\newcommand{\hg}{\mathbin{:}} % homogeneous coordinates
\newcommand{\brak}[1]{{\llbracket{#1}\rrbracket}}
\newcommand{\pt}{\mathrm{pt}}
\newcommand{\Loc}{\mathrm{Loc}}
\newcommand{\Top}{\mathrm{Top}}
\newcommand{\effective}{ef{}fective\xspace}
%\setbeamertemplate{blocks}[rectangles][shadow=false]
\newenvironment{indentblock}{%
\list{}{\leftmargin\leftmargin}%
\item\relax
}{%
\endlist
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{hilblock}{
\begin{center}
\begin{minipage}{9.05cm}
\setlength{\textwidth}{9.05cm}
\begin{actionenv}#1
\def\insertblocktitle{}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\newcommand{\bignumber}[1]{
\renewcommand{\insertenumlabel}{#1}\scalebox{1.5}{\usebeamertemplate{enumerate item}}
}
\newcommand{\normalnumber}[1]{
\renewcommand{\insertenumlabel}{#1}\scalebox{1.0}{\usebeamertemplate{enumerate item}}
}
\newcommand{\bigheart}{\includegraphics{heart}}
\newenvironment{changemargin}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\pointthis}[3]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (#2) {#2};
\node[visible on=#1,overlay,rectangle callout,callout relative pointer={(0.3cm,0.5cm)},fill=blue!20] at ($(#2.north)+(-0.1cm,-1.1cm)$) {#3};
}%
}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\hcancel}[5]{%
\tikz[baseline=(tocancel.base)]{
\node[inner sep=0pt,outer sep=0pt] (tocancel) {#1};
\draw[red!80, line width=0.4mm] ($(tocancel.south west)+(#2,#3)$) -- ($(tocancel.north east)+(#4,#5)$);
}%
}
\newcommand{\explain}[7]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#3,rounded corners] (label) {#1};
\node[anchor=north,visible on=<#2>,overlay,rectangle callout,rounded corners,callout
relative pointer={(0.0cm,0.5cm)+(0.0cm,#6)},fill=#3] at ($(label.south)+(0,-0.3cm)+(#4,#5)$) {#7};
}%
}
\newcommand{\explainstub}[2]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#2,rounded corners] (label) {#1};
}%
}
\newcommand{\squiggly}[1]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (label) {#1};
\draw[thick,color=red!80,decoration={snake,amplitude=0.5pt,segment
length=3pt},decorate] ($(label.south west) + (0,-2pt)$) -- ($(label.south east) + (0,-2pt)$);
}%
}
\setbeamertemplate{frametitle}[default][center]
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{varblock}[2]{\begin{varblockextra}{#1}{#2}{}}{\end{varblockextra}}
\newenvironment<>{varblockextra}[3]{
%\begin{center}
\begin{minipage}{#1}
\begin{actionenv}#4
\def\insertblocktitle{\vspace*{-1em}}
\def\varblockextraend{#3}
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\varblockextraend
\end{actionenv}
\end{minipage}
}
%\end{center}}
\setbeamertemplate{navigation symbols}{}
\newcounter{framenumberpreappendix}
\newcommand{\backupstart}{
\setcounter{framenumberpreappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
\addtocounter{framenumberpreappendix}{-\value{framenumber}}
\addtocounter{framenumber}{\value{framenumberpreappendix}}
}
\newcommand{\insertframeextra}{}
\setbeamertemplate{footline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex,dp=1ex,right,rightskip=1mm,leftskip=1mm]{}%
% \inserttitle
\hfill
\insertframenumber\insertframeextra\,/\,\inserttotalframenumber
\end{beamercolorbox}%
\vskip0pt%
}
\newcommand{\hil}[1]{{\usebeamercolor[fg]{item}{\textbf{#1}}}}
\newcommand{\bad}[1]{\textcolor{red!90}{\textnormal{#1}}}
\newcommand{\subhead}[1]{{\centering\textcolor{gray}{\hrulefill}\quad\textnormal{\hil{#1}}\quad\textcolor{gray}{\hrulefill}\par\vspace*{-0.6em}}}
\newcommand{\speak}[2]{\textcolor{blue!80}{$#1 \models #2$}}
\newcommand{\simplespeak}[1]{\textcolor{blue!80}{`#1'}}
\newcommand{\triang}{\hil{$\blacktriangleright$}\xspace}
\setbeamertemplate{itemize item}{$\blacktriangleright$}
\begin{document}
\addtocounter{framenumber}{-1}
%{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{4.95cm}\includegraphics[width=\paperwidth]{topos-horses}\end{minipage}}
{
\begin{frame}[c]
\centering
\bigskip
\bigskip
\includegraphics[width=0.4\textwidth]{phantoms}
\bigskip
\bigskip
\bigskip
Embracing the generic prime ideal: \\
\hil{the tale of an enchanting mathematical phantom}
\scriptsize
\textit{-- an invitation --}
\bigskip
\bigskip
\bigskip
\textit{Antwerp Algebra Colloquium} \\
\color{black}
March 11th, 2022
\bigskip
\bigskip
\color{black}
Ingo Blechschmidt \\
University of Augsburg
\bigskip
\bigskip
\bigskip
\par
\end{frame}}
\begin{frame}[t]{Mathematical phantoms}
\begin{columns}[T]
\begin{column}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{wraith-portrait} \\
\scriptsize
Gavin Wraith
\end{column}
\begin{column}{0.7\textwidth}
\emph{One of the recurring themes of mathematics, \\
and one that I have always found seductive, \\
is that of \\\medskip
\triang the nonexistent entity which ought to be there \\
\phantom{\triang}but apparently is not; \\\medskip
\triang which nevertheless obtrudes its effects so \\
\phantom{\triang}convincingly that
one is forced to concede \\
\phantom{\triang}a broader notion of existence.}
\end{column}
\end{columns}
\bigskip
\subhead{Examples}
\bigskip
\mbox{\begin{minipage}{0.15\textwidth}
\centering\small
\includegraphics[height=5em]{zeta-function} \\
$\mathbb{C}$
\end{minipage}\quad
\begin{minipage}{0.20\textwidth}
\centering\small
\includegraphics[height=5em]{3-adic-numbers} \\
$\mathbb{Q}_p$
\end{minipage}\quad
\begin{minipage}{0.20\textwidth}
\centering\small
\includegraphics[height=5em]{bruyn-pope} \\
$\mathbb{F}_1$
\end{minipage}\quad
\begin{minipage}{0.42\textwidth}
\centering\small
\includegraphics[height=5em]{hilbert-hotel} \\
$\infty$
\end{minipage}}
\end{frame}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{5.95cm}\includegraphics[width=\paperwidth]{fr1}\end{minipage}}
\begin{frame}{The generic prime filter}
\begin{wrapfigure}{r}{0.18\textwidth}
\vspace*{-1.5em}
\includegraphics[width=0.20\textwidth]{miles-reid-frontispiece}
\vspace*{-1.5em}
\vspace*{-1.5em}
\end{wrapfigure}
\justifying
Let~$A$ be a commutative ring with unit.
Let~$M$ be an $A$-module. For any prime filter~$\ppp \subseteq A$, let
\[ M_\ppp \defeq M[\ppp^{-1}] \defeq \{ \tfrac{x}{s} \,|\, x \in M, s \in \ppp \} \]
be the \hil{stalk} of~$M$ at~$\ppp$.
\visible<2->{\begin{varblock}{0.7\textwidth}{}
The generic prime filter
is a \hil{reification} of all prime filters into a single coherent
entity.
\end{varblock}}
\only<3>{\textbf{Local-global principle.} \\\medskip
{\small\centering\begin{tabular}{l@{$\quad\text{iff$^\star$}\quad$}l}
% for all prime filters~$\ppp$, $A_\ppp$ is reduced & $A$ is reduced \\
$M = 0$ & for all prime filters~$\ppp$, $M_\ppp = 0$. \\
$M \to N$ is injective & for all prime filters~$\ppp$, $M_\ppp \to N_\ppp$ is injective. \\
$M \to N$ is surjective & for all prime filters~$\ppp$, $M_\ppp \to N_\ppp$ is surjective. \\
$f$ is nilpotent in~$A$ & for all prime filters~$\ppp$, $f \not\in \ppp$. \\
??? & for all prime filters~$\ppp$, $M_\ppp$ is fin.\@ generated over~$A_\ppp$. \\
???\!\!\!\!\!\!\!\!\phantom{$M$ is finite locally free} & for all prime filters~$\ppp$, $M_\ppp$ is finite free over~$A_\ppp$. \\
\end{tabular}}}
\only<4>{\textbf{Local-global principle.} Let~$\ppp_0$ be the \hil{generic prime filter}
of~$A$. \\\medskip
{\small\centering\begin{tabular}{l@{$\quad\text{iff}\quad$}l}
% for all prime filters~$\ppp$, $A_\ppp$ is reduced & $A$ is reduced \\
$M = 0$ & $M_{\ppp_0} = 0$. \\
$M \to N$ is injective & $M_{\ppp_0} \to N_{\ppp_0}$ is injective. \\
$M \to N$ is surjective & $M_{\ppp_0} \to N_{\ppp_0}$ is surjective. \\
$f$ is nilpotent in~$A$ & $f \not\in \ppp_0$. \\
$M$ is fin.\@ generated & $M_{\ppp_0}$ is fin.\@ generated. \\
$M$ is finite locally free & $M_{\ppp_0}$ is finite free.
\end{tabular}}}
\end{frame}}
\begin{frame}{The universal localization}
Let~$A$ be a ring.
The stalks~$A_\ppp$ are \hil{local rings}: If a finite sum of elements is
invertible, then so is one of the summands.
Is there a \hil{universal localization} of~$A$?
\pause
\[
\xymatrix{
A \ar[rd] \ar[rrr]^f &&& {\substack{\phantom{\text{local}}\\\text{\normalsize$R$}\\\text{local}}} \\
& {\substack{\text{\normalsize$A'$}\\\text{local}}} \ar@{-->}_[@!35]{\text{local}}[rru]
}
\]
\pause
\justifying
For a fixed local ring~$R$, the localization $A' \defeq A_\ppp$
where~$\ppp \defeq f^{-1}[R^\times]$ would do the job.
\pause
\textbf{Fact.} A universal localization exists iff~$A$ has exactly one prime
filter.
\pause
\textbf{Dream.} If only there was a \hil{generic prime filter}~$\ppp_0$,
the universal localization would always exist and be given by~$A^\sim \defeq A_{\ppp_0}$!
\end{frame}
%{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{5.95cm}\includegraphics[width=\paperwidth]{fr1}\end{minipage}}
%\begin{frame}{The generic prime filter}
% \mbox{For~$A$-modules~$M$, let~$M^\sim \defeq M_{\ppp_0}$ be
% the stalk at the generic prime filter.}
%
% {\centering\begin{tabular}{l@{$\quad\Longleftrightarrow\quad$}l}
% $x \not\in \ppp_0$ & $x$ is nilpotent \\
% $x \in \ppp_0 \Rightarrow y \in \ppp_0$ & $x \in \sqrt{(y)}$ \\
% % $x$ is regular in~$A^\sim$ & $x$ is regular in~$A$ \\
% $A^\sim$ is reduced & $A$ is reduced \\
% $A^\sim$ is an integral domain & $A$ is an integral domain \\
% $M^\sim = 0$ & $M = 0$ \\
% $M^\sim$ is fin.\@ generated over $A^\sim$ & $M$ is fin.\@ generated over~$A$ \\
% $M^\sim$ is finite free & $M$ is finite locally free \\
% % $M^\sim$ is flat over~$A^\sim$ & $M$ is flat over~$A$ \\
% $M^\sim \to N^\sim$ is injective & $M \to N$ is injective \\
% $M^\sim \to N^\sim$ is surjective & $M \to N$ is surjective
% \end{tabular}}
% \bigskip
% \pause
%
% \subhead{$\boldsymbol{A^\sim}$ is better than~$\boldsymbol{A}$}
% {\small\centering(Assume~$A$ reduced.)\par}
% \begin{enumerate}[a]
% \item $A^\sim$ is a \hil{field}: $\forall x\?A^\sim\_ (\neg(\exists y\?A^\sim\_
% xy = 1) \Rightarrow x = 0)$.
%
% %\item $A^\sim$ has \hil{$\boldsymbol{\neg\neg}$-stable equality}:
% % $\forall x,y\?A^\sim\_ \neg\neg(x = y) \Rightarrow x = y$.
%
% \item \mbox{$A^\sim$ is \hil{anonymously Noetherian}.}\\[-1.2em]
% \end{enumerate}
%\end{frame}}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{4.95cm}\includegraphics[width=\paperwidth]{topos-horses}\end{minipage}}
\begin{frame}{Generic models}
\textbf{Theorem.} There is a \hil{generic ring}, a particular ring$^\star$
such that for every$^{\star\star}$
ring-theoretic statement~$\varphi$, the following are equivalent:
\begin{enumerate}
\item $\varphi$ holds for the generic ring.
\item $\varphi$ holds for every ring.
\item $\varphi$ is provable from the ring axioms.
\end{enumerate}
Similarly for every$^{\star\star\star}$ other theory in place of the theory of rings:
\begin{itemize}
\item[] \ldots{} the generic group, field, vector space, \ldots
%-- \emph{the generic ring is neither~$\ZZ$ nor~$\ZZ[X]$}
\item[] \ldots{} the generic prime ideal of a given ring~$A$ \ldots
%-- \emph{don't confuse with the zero ideal}
\item[] \ldots{} the generic surjection~$\NN \to X$ to a given set~$X$ \ldots
%-- \emph{particularly useful in case~$X$ is not countable}
\end{itemize}
\bigskip
\setlength\fboxsep{7pt}
\visible<2->{\begin{minipage}{0.57\textwidth}
\centering
\colorbox{red!50}{Is~$1 + 1 = 0$ in the generic ring?} \\
\scriptsize\color{white} \phantom{y}nonclassical truth values\phantom{y}
\end{minipage}}
\visible<3->{\begin{minipage}{0.42\textwidth}
\centering
\colorbox{mypurple!50}{The generic ring is a field.}
\scriptsize\color{white} mysterious nongeometric sequents
\end{minipage}}
\bigskip
\end{frame}}
\begin{frame}[fragile]{Mathematical universes}
% \begin{itemize}
% \item The \hil{standard universe}~$V$
% \item Gödel's \hil{constructible universe}~$L$
% \item The \hil{ef{}fective topos}~$\Eff$
% \item The topos~$\Sh(X)$ of set-valued \hil{sheaves} on a space~$X$
% \item The \hil{classifying topos}~$\Set[\TT]$ of a geometric theory~$\TT$
% \end{itemize}
\tikzstyle{topos} = [draw=mypurple, very thick, rectangle, rounded corners, inner sep=5pt, inner ysep=10pt]
\tikzstyle{title} = [fill=mypurple, text=white]
\input{images/primes.tex}
\newcommand{\drawbox}[4]{
\node[topos, #4] [fit = #3] (#1) {};
\node[title] at (#1.north) {#2};
}
\newcommand{\muchstuff}{
\includegraphics[height=3em]{filmat}
\scalebox{0.5}{\sieve{14}{2}}
}
\newcommand{\muchstuffplaceholder}{
\includegraphics[height=3em]{filmat-placeholder}
\scalebox{0.5}{\fakesieve{14}{2}}
}
\newcommand{\fewstuff}{
\includegraphics[height=3em]{filmat}
\scalebox{0.5}{\sieve{7}{2}}
}
{\centering
\begin{tikzpicture}
\node[scale=0.4] (objs-set1) at (-4.0,-2.5) {
\fewstuff
};
\node[scale=0.4] (objs-eff1) at (4.0,-2.5) {
\fewstuff
};
\node[scale=0.4] (objs-sh1) at (0,-2.5) {
\fewstuff
};
\node (prop-set1) [below of=objs-set1, align=left] {
The usual laws \\
of logic hold.
};
\node (prop-eff1) [below of=objs-eff1, align=left] {
Every function \\
is computable.
};
\node (prop-sh1) [below of=objs-sh1, align=left] {
The axiom of \\
choice fails.
};
\drawbox{set1}{$\mathrm{Set}$}{(objs-set1) (prop-set1)}{}
\drawbox{eff1}{Ef{}f}{(objs-eff1) (prop-eff1)}{tape}
\drawbox{sh1}{$\mathrm{Sh}(X)$}{(objs-sh1) (prop-sh1)}{draw=none}
\def\R{8pt}
\begin{pgfonlayer}{background}
\draw[decoration={bumps,segment length=8pt}, decorate, very thick, draw=mypurple]
($(sh1.south west) + (\R, 0)$) arc(270:180:\R) --
($(sh1.north west) + (0, -\R)$) arc(180:90:\R) --
($(sh1.north east) + (-\R, 0)$) arc(90:0:\R) --
($(sh1.south east) + (0, \R)$) arc(0:-90:\R) --
cycle;
\end{pgfonlayer}
\end{tikzpicture}
\par}
\begin{itemize}
\item For any topos~$\E$ and any statement~$\varphi$, we define the meaning of
``$\E \models \varphi$'' (``$\varphi$ holds in the internal universe
of~$\E$'') using the \hil{Kripke--Joyal semantics}.
\bigskip
\item Any topos supports \hil{mathematical reasoning}:
\medskip
If~$\ \E \models \varphi\ $ and if~$\ \varphi$ entails~$\psi$
\pointthis{<2>}{intuitionistically}{%
no $\varphi \vee \neg\varphi$,\ \
no $\neg\neg\varphi \Rightarrow \varphi$,\ \
no axiom of choice},
then~$\ \E \models \psi$.
\end{itemize}
\end{frame}
\newcommand{\expl}[2]{
``$\Eff \models \!\!\text{\normalnumber{#1}}$\!'' means: #2
}
\begin{frame}{Exploring the \effective topos}
\vspace*{-1em}
\begin{center}\includegraphics[width=0.4\textwidth]{turing-machine}\end{center}
\small
\begin{tabular}{@{\!\!\!\!\!\!\!\!}l@{\,}lll}
\toprule
& Statement & in $\Set$ & in $\Eff$ \\
\midrule
\normalnumber{1} & Every natural number is prime or not prime. & \cmark{} (trivially) & \cmark \\
\normalnumber{2} & There are infinitely many primes. & \cmark & \cmark \\
\normalnumber{3} & Every map $\NN \to \NN$ is constantly zero or not. & \cmark{} (trivially) & \xmark \\
\normalnumber{4} & Every map $\NN \to \NN$ is computable. & \xmark & \cmark{} (trivially) \\
\normalnumber{5} & Every map $\RR \to \RR$ is continuous. & \xmark & \cmark \\
%\normalnumber{6} & Markov's principle holds. & \cmark{} (trivially) & \cmark \\
%\normalnumber{7} & Heyting arithmetic is categorical. & \xmark & \cmark \\
\bottomrule
\end{tabular}
\medskip
\only<2>{\expl{1}{There is a machine which determines of any given
number whether it is prime or not.}}
\only<3>{\expl{2}{There is a machine producing arbitrarily many
primes.}}
\only<4>{\expl{3}{There is a machine which, given a machine
computing a map~$f : \NN \to \NN$, determines whether~$f$ is constantly
zero or not.}}
\only<5>{\expl{4}{There is a machine which, given a machine
computing a map~$f : \NN \to \NN$, outputs a machine
computing~$f$.}}
\end{frame}
\begin{frame}{The classifying topos as a local lens}
\small
\begin{itemize}
\item\justifying For ring elements~$f \in A$ and formulas~$\varphi$, we
define~\speak{D(f)}{\varphi} (``$\varphi$~holds on (and beyond)
stage~$D(f)$'') by the following clauses.
\item\justifying A formula~$\varphi$ holds in the classifying topos of the theory of
prime filters of~$A$ iff~\speak{D(1)}{\varphi}.
\end{itemize}
\renewcommand{\arraystretch}{1.3}
\begin{tabular}{p{0.31\textwidth}@{\ iff\ }p{0.75\textwidth}}
\speak{D(f)}{\forall x\?A^\sim\_ \varphi(x)} &
for all~$g \in A$ and~$x_0 \in A[(fg)^{-1}]$, \speak{D(fg)}{\varphi(x_0)} \\
\speak{D(f)}{\varphi \Rightarrow \psi} &
for all~$g \in A$, \speak{D(fg)}{\varphi} implies~\speak{D(fg)}{\psi} \\
\speak{D(f)}{\varphi \vee \psi} &
there is a partition~$f^n = f g_1{+}\cdots{+}f g_m$ s.\@ th.\@
\phantom{lollollololllol}
\phantom{lol} for each~$i$,
\speak{D(fg_i)}{\varphi}
or \speak{D(fg_i)}{\psi} \\
\speak{D(f)}{\bot} & $f$ is nilpotent \\
\speak{D(f)}{x \in \ppp_0} & $f \in \sqrt{(x)}$
\end{tabular}
\bigskip
\pause
\textbf{Example.}\par
\scriptsize
\vspace*{-1.5em}
\begin{align*}
& \text{\speak{D(1)}{\text{`$x$ is not invertible'}}}
\ \ \ \ \text{iff}\ \ \ \ \text{\speak{D(1)}{\text{`$x$ is invertible'} \Rightarrow \bot}} \\
\text{iff}\ \ \ \ & \text{for all~$g \in A$, if \speak{D(g)}{\text{`$x$ is invertible'}} then~\speak{D(g)}{\bot}} \\
\text{iff}\ \ \ \ & \text{for all~$g \in A$, if $x$ is invertible in~$A[g^{-1}]$
then~$g$ is nilpotent}
\ \ \ \ \text{iff}\ \ \ \ \text{$x$ is nilpotent}.
\end{align*}
\end{frame}
\begin{frame}{Applications of the generic prime filter}
\small
\subhead{Injective matrices}
\begin{varblock}{\textwidth}{Injective matrices}
\justifying
\textbf{Theorem.}
Let~$M$ be an injective matrix with more columns than rows over a ring~$A$.
Then~$1 = 0$ in~$A$.
\end{varblock}
\pause
\justifying
\textbf{Proof.} \bad{Assume not.} Then there is a \bad{minimal
prime ideal} $\ppp \subseteq A$. The matrix is injective over the \bad{field}~$A_\ppp$;
contradiction to basic linear algebra.\qed\medskip
\pause
\textbf{Proof.} \simplespeak{$M$ is also injective as a matrix over~$A^\sim = A_{\ppp_0}$.
This is a contradiction by basic intuitionistic linear
algebra.} Thus~\simplespeak{$\bot$}. Hence~$1 = 0$ in~$A$.\qed
\bigskip
\pause
\subhead{Grothendieck's generic freeness}
\begin{varblock}{\textwidth}{Generic freeness\phantom{p}}
\justifying
\textbf{Theorem.}
Let~$M$ be a finitely generated~$A$-module.
If~$f = 0$ is the only element of~$A$ such that~$M[f^{-1}]$ is a
free~$A[f^{-1}]$-module, then~$1 = 0$ in~$A$.
\end{varblock}
\justifying
\textbf{Proof.} The claim amounts to \simplespeak{$M^\sim$ is \hil{not not} free}.
This statement follows from basic intuitionistic linear algebra over the
field~$A^\sim$.\qed
\end{frame}
\end{document}
illustration:
phantoms
0 Mathematical phantoms
"One of the recurring themes of mathematics, and one that I have always found
seductive, is that of the nonexistent entity which ought to be there but
apparently is not; which nevertheless obtrudes its effects so convincingly that
one is forced to concede a broader notion of existence." -- Gavin Wraith
animation of extensions of the natural number line?