-
Notifications
You must be signed in to change notification settings - Fork 1
/
EightQueenProblem.c
146 lines (134 loc) · 3.88 KB
/
EightQueenProblem.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*
The Eight Queen Problem, also known as Eight Queen Puzzle, is a problem of placing eight queens on an 8 x 8 chessboard so that none of them attack one another.
By attacking, we mean no two are in the same row, column or diagonal.
Eight Queen Problem is a form of more generalized problem known as N Queen Problem or N Queen Puzzle,
where you have to place the N queens on an N x N chessboard such a way that none of them attack one another.
*/
#include <stdio.h>
#include <conio.h>
#include <Windows.h>
#define N 8
//This method is used to color the characters
void Color(int col) {
HANDLE hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
SetConsoleTextAttribute(hConsole, col);
}
//This method print the final solution
void printSolution(int board[N][N])
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if (board[i][j] == 1)
{
Color(2);
printf("%d ", board[i][j]);
}
else
{
Color(15);
printf("%d ", board[i][j]);
}
}
printf("\n");
}
}
//This method checks whether it is safe to place the queen in particular row and column.
//This will return true if it is safe to place the queen and false otherwise.
bool isSafe(int board[N][N], int row, int col)
{
int i, j;
/* Check this row on left side */
for (i = 0; i < col; i++)
if (board[row][i])
return false;
/* Check upper diagonal on left side */
for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
if (board[i][j])
return false;
/* Check lower diagonal on left side */
for (i = row, j = col; j >= 0 && i < N; i++, j--)
if (board[i][j])
return false;
return true;
}
//A recursive utility problem to solve N queens problem.
bool solveNQUtil(int board[N][N], int col)
{
/* base case: If all queens are placed
then return true */
if (col >= N)
return true;
/* Consider this column and try placing
this queen in all rows one by one */
for (int i = 0; i < N; i++)
{
/* Check if queen can be placed on
board[i][col] */
if (isSafe(board, i, col))
{
/* Place this queen in board[i][col] */
board[i][col] = 1;
/* recur to place rest of the queens */
if (solveNQUtil(board, col + 1))
return true;
/* If placing queen in board[i][col]
doesn't lead to a solution, then
remove queen from board[i][col] */
board[i][col] = 0; // BACKTRACK
}
}
/* If queen can not be place in any row in
this colum col then return false */
return false;
}
/* This function solves the N Queen problem using
Backtracking. It mainly uses solveNQUtil() to
solve the problem. It returns false if queens
cannot be placed, otherwise return true and
prints placement of queens in the form of 1s.
Please note that there may be more than one
solutions, this function prints one of the feasible soutions*/
bool solveNQ()
{
int board[N][N] =
{
{
0,
0,
0,
0
},
{
0,
0,
0,
0
},
{
0,
0,
0,
0
},
{
0,
0,
0,
0
}
};
if (solveNQUtil(board, 0) == false)
{
printf("Solution does not exist");
return false;
}
printSolution(board);
return true;
}
int main() {
solveNQ();
_getch();
return 0;
}