Phase 3 of Ninja Data Scientist Career Track.
- Introduction To Data Science
- Introduction to Python
- Conditions and Loops
- Patterns
- More on Loops
- Strings, List & 2D List
- Functions
- Tuples, Dictionary And Sets
- Object Oriented Programming Systems(OOPs)
- Working With Files
- NumPy
- Pandas
- Plotting Graphs
- Structured Query Language(SQL) - Basic
- Structured Query Language(SQL) - Advance
- Indexing And SQLite
- Application Programming Interfaces(APIs) - I
- Application Programming Interfaces(APIs) - II
- Web Scraping - BeautifulSoup
- Web Scraping - Selenium
- Web Scraping - Advanced Selenium
- Statistics
- Descriptive Statistics
- Introduction to Inferential Statistics
- Inferential Statistics : Hypothesis Testing
- Introduction to Machine Learning
- Linear Regression
- MultiVariable Regression And Gradient Descent
- Feature Scaling
- Logistic Regression
- Classification Measures
- Decision Trees - I
- Decision Trees - II
- Random Forests
- Naive Bayes
- K-Nearest Neighbours(K-NN)
- Support Vector Machine(SVM)
- Principal Component Analysis(PCA) - I
- Principal Component Analysis(PCA) - II
- Natural Language Processing(NLP)
- Neural Networks
- Tensor Flow
- Keras
- Convolutional Neural Network(CNN) - I
- Convolutional Neural Network(CNN) - II
- Recurrent Neural Network(RNN)
- Long Short-Term Memory(LSTM)
- Unsupervised Learning - I
- Unsupervised Learning - II
- Introduction to Data Visualization
- Getting Familiar with Tableau
- Tableau Visualizations
- Seaborn
- Git