-
Notifications
You must be signed in to change notification settings - Fork 1
/
Task16b_Parallel_Coordinates_Soluble_2019-11-12_AFIRvsSCIM_T0assumpt.R
315 lines (275 loc) · 12.2 KB
/
Task16b_Parallel_Coordinates_Soluble_2019-11-12_AFIRvsSCIM_T0assumpt.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# ---
# title: "Task16b - Parallel Coordinates - Overiev of simulations"
# output:
# html_document:
# toc: true
# toc_float: true
# code_folding: hide
# ---
# Setup and Read Data
#```{r, warning=FALSE, message=FALSE}
source("ams_initialize_script.R")
source("SCIM_calculation.R")
source("ivsc_2cmt_RR_V1.R")
library(RxODE)
model = ivsc_2cmt_RR_KdT0L0()
dirs$rscript_name = "Task16b_Parallel_Coordinates_Soluble_2019-11-12_AFIRvsSCIM_T0assumpt.R"
dirs$filename_prefix= str_extract(dirs$rscript_name,"^Task\\d\\d\\w?_")
data_in = read.csv("results/Task15_2019-11-14_10e3.csv",stringsAsFactors = FALSE)
data_in$id = 1:1e4
data_in$tmax = 16*7
#```
# Compute various quantities for comparing AFIR and SCIM, theory and simulation
### Using adhoc theory calculation for SCIM
#```{r, warning=FALSE, message=FALSE}
#put data into categories ----
data = data_in %>%
mutate(SCIM_thy= SCIM_adhoc_thy) %>%
mutate(Cavgss = dose_nmol/(CL*tau),
Kss_TL = Kd_TL + keTL/kon_TL,
Kss_DT = Kd_DT + keDT/kon_DT,
TL0 = T0*L0/Kss_TL,
koff_TL = Kd_TL*kon_TL,
koff_DT = Kd_DT*kon_DT,
ksynT = T0*keT + keTL*TL0,
ksynL = L0*(kon_TL*T0 + keL) - koff_TL*TL0,
Lss = ksynL/keL) %>%
mutate(AFIR_SCIM_sqerr = (AFIR_thy - SCIM_sim)^2) %>%
mutate(AFIRthy_category = case_when(AFIR_thy < 0.05 ~ "AFIRthy < 5%",
AFIR_thy > 0.30 ~ "AFIRthy > 30%",
AFIR_thy >= 0.05 & AFIR_thy <= 0.30 ~ "5% <= AFIRthy <= 30%"),
AFIRsim_category = case_when(AFIR_sim < 0.05 ~ "AFIRsim < 5%",
AFIR_sim > 0.30 ~ "AFIRsim > 30%",
AFIR_sim >= 0.05 & AFIR_sim <= 0.30 ~ "5% <= AFIRsim <= 30%"),
SCIMthy_category = case_when(SCIM_thy < 0.05 ~ "SCIMthy < 5%",
SCIM_thy > 0.30 ~ "SCIMthy > 30%",
SCIM_thy >= 0.05 & SCIM_thy <= 0.30 ~ "5% <= SCIMthy <= 30%"),
SCIMsim_category = case_when(SCIM_sim < 0.05 ~ "SCIMsim < 5%",
SCIM_sim > 0.30 ~ "SCIMsim > 30%",
SCIM_sim >= 0.05 & SCIM_sim <= 0.30 ~ "5% <= SCIMsim <= 30%"),
AFIRthy_AFIRsim_category = paste0(AFIRthy_category, ", ", AFIRsim_category),
AFIRthy_SCIMsim_category = paste0(AFIRthy_category, ", ", SCIMsim_category),
AFIRsim_SCIMsim_category = paste0(AFIRsim_category, ", ", SCIMsim_category),
SCIMthy_SCIMsim_category = paste0(SCIMthy_category, ", ", SCIMsim_category),
error_category = case_when(AFIR_SCIM_sqerr < 0.1 ~ "low_error",
TRUE ~ "high_error"))
data = data %>%
arrange(AFIR_thy) %>%
mutate(AFIRthy_category = factor(AFIRthy_category, levels = unique(AFIRthy_category))) %>%
arrange(AFIR_sim) %>%
mutate(AFIRsim_category = factor(AFIRsim_category, levels = unique(AFIRsim_category))) %>%
arrange(SCIM_sim) %>%
mutate(SCIMsim_category = factor(SCIMsim_category, levels = unique(SCIMsim_category)))
#check the assumptions of the data ----
data = data %>%
mutate(Ttotss = T0*Tfold,
koff_DT = Kd_DT*kon_DT,
assumption_SCIM_lt_30 = SCIM_ < 0.30,
assumption_drug_gg_T0 = Cavgss > 10*Ttotss,
assumption_drug_gg_KssDT = Cavgss > 10*Kss_DT,
assumption_koffDT_gt_keT = koff_DT > keT,
assumption_koffTL_fast = koff_TL > 1/30,
assumption_Cavgss_gg_LssKssDT_KssTL = Cavgss > 10*Kss_DT*Lss/Kss_TL,
# assumption_T0simple = T0/(ksynT/keT) > 0.5 & T0/(ksynT/keT) < 2, #the simple formula works for T0
assumption_L_noaccum = Lss/L0 < 2, #then SCIM = AFIR
assumption_Tss_gt_Lss = Tss_sim > Lss_sim,
assumption_all = assumption_SCIM_lt_30 &
assumption_drug_gg_T0 &
assumption_drug_gg_KssDT &
assumption_koffDT_gt_keT &
assumption_koffTL_fast &
assumption_Cavgss_gg_LssKssDT_KssTL &
#assumption_T0simple &
assumption_Tss_gt_Lss &
assumption_L_noaccum)
data = data %>%
arrange(id) %>%
select(id,everything())
filename = paste0("results/",dirs$filename_prefix,"data.csv")
write.csv(data,filename, row.names = FALSE )
x = read.csv(filename,stringsAsFactors = FALSE)
assumptions = data %>%
select(id,AFIR_thy,AFIR_sim,SCIM_simplest_thy,SCIM_adhoc_thy,SCIM_sim,starts_with("assumption")) %>%
select(-assumption_all) %>%
arrange(SCIM_sim)
nam = names(assumptions) %>%
str_replace("^assumption_","")
names(assumptions) = nam
View(assumptions)
#```
# Put data into error categories and summarize
#```{r, warning=FALSE, message=FALSE}
threshold = 0.1
data_errss = data_in %>%
filter(abs(TLss_frac_change)>=threshold)
print(paste0(nrow(data_errss)," of ", nrow(data_in), " : Number of rows with TLss_frac_change > 0.1"))
data_err0 = data_in %>%
filter(abs(TL0_05tau_frac_change)>=threshold)
print(paste0(nrow(data_err0)," of ", nrow(data_in), " : Number of rows with TL0_05tau_frac_change > 0.1"))
# error historgram ----
data_quick_summ = data %>%
select(id,AFIR_thy, SCIM_sim, AFIR_SCIM_sqerr, TLss_frac_change, TL0_05tau_frac_change) %>%
gather(key,value,-c(id)) %>%
mutate(category = case_when((value < threshold) ~ "keep_low",
((value >= threshold) & (key %in% c("AFIR_SCIM_sqerr","SCIM_sim"))) ~ "keep_high",
((value >= threshold) & (key %in% c("AFIR_thy"))) ~ "keep_high_AFIR",
TRUE ~ "remove_high_error"))
g = ggplot(data_quick_summ, aes(value, fill = category))
g = g + geom_histogram()
g = g + facet_wrap(~key, scales = "free")
g = g + scale_fill_manual(values = c(keep_low = "grey80",
keep_high = "grey50",
remove_high_error = "red",
keep_high_AFIR = "blue"))
g = g + xgx_scale_x_log10()
g = g + ggtitle("")
print(g)
#keep only the simulations with no issues
data_keep = data %>%
filter(TLss_frac_change < threshold,
TL0_05tau_frac_change < threshold)
#put simulations into different categories
data_summary = data_keep %>%
group_by(AFIRthy_SCIMsim_category) %>%
count() %>%
arrange(desc(n))
kable(data_summary)
#```
# AFIRsim vs SCIMsim : 3x3 plot colors ----
#```{r, warning=FALSE, message=FALSE, results = 'asis'}
param2uniform = function(x) {(log(x) - log(min(x)))/(log(max(x))-log(min(x)))}
data_plot = data_keep %>%
mutate_at(vars(AFIR:kon_TL,dose_mpk), funs(tf=param2uniform(.))) %>%
select(id,contains("AFIR"),contains("SCIM"), T0_tf:kon_TL_tf, dose_mpk_tf, contains("assumption")) %>%
gather(param,param_value,-c(id, contains("AFIR"), contains("SCIM"), contains("assumption"))) %>%
mutate(param = str_replace(param,"_tf",""))
#sort by average param value in one category to help with visualization ----
data_summ = data_plot %>%
filter(AFIRthy_SCIMsim_category == "AFIRthy < 5%, SCIMsim > 30%") %>%
group_by(param,AFIRthy_SCIMsim_category) %>%
summarise(x = mean(param_value)) %>%
arrange(x) %>%
ungroup()
kable(data_summ)
data_plot = data_plot %>%
mutate(param = factor(param,
levels = data_summ$param))
g = ggplot(data_plot, aes(x=param,y=param_value, group = id, color = assumption_all, alpha = assumption_all))
g = g + geom_line()
g = g + facet_grid(SCIMsim_category~AFIRthy_category,switch = "y")
g = g + theme(axis.text.x = element_text(angle = 45, hjust = 1))
g = g + labs(x = "Parameter", y = "Parameter Value")
g = g + guides(colour = guide_legend(override.aes = list(alpha = 1)))
g = g + scale_color_manual(values = c(`TRUE` = "blue", `FALSE` = "red"))
g = g + scale_alpha_manual(values = c(`TRUE` = .1, `FALSE` = 0.01))
g = xgx_save(7,7,dirs,"Parallel_Coord_Soluble_3x3_AFIRthy_AFIRsim","")
g1 = g
print(g)
#```
# Focus on when assumptions are true and SCIM > 30% while AFIRthy < 5%
#```{r, warning=FALSE, message=FALSE}
#explore data data where all assumptions are true and still
#AFIRsim > 30% and AFIRthy < 5% ---- on look, there is lots of L0!!!
#focus on this plot
data_new = data_plot %>%
filter(SCIMsim_category == "SCIMsim > 30%",
AFIRthy_category == "AFIRthy < 5%",
assumption_all == TRUE)
if (nrow(data_new)==0) {
stop("there are no examples of AFIR_thy<5% and SCIMsim > 30%")
}
g = g1
g = g %+% data_new
g = g + geom_line(alpha = 0.05)
g = xgx_save(5,5,dirs,"Parallel_Coord_Soluble_AFIRthy_lt_5_SCIMsim_ge_30","")
g2= g
#print(g)
#```
# Identify patients where all assumptions true and theory vs sim disagree.
#```{r, warning=FALSE}
id = unique(sort(data_new$id))
print("these IDs, even with all the restrictions, AFIR and SCIM still don't match")
print(id)
for (id_plot in id[1:5]) {
g = g2
g = g + geom_line(data = filter(data_new,id==id_plot),
size = 2,
color = "black")
g = g + ggtitle(paste("id =",id_plot))
print(g)
filepref = paste0("Parallel_Coord_Soluble_AFIRthy_lt_5_SCIMsim_ge_30_",id_plot)
g = xgx_save(5,5,dirs,filepref,"")
#simulate a patient where theory and simulation disagree
param = data %>%
filter(id==id_plot)
assumptions = param %>%
select(contains("assumption")) %>%
t()
kable(assumptions)
tmax = 365 #days
tau = param$tau #days
dose_nmol = param$dose_nmol
compartment = 2
infusion = TRUE
nam = names(param)
param_as_double = param %>%
as.numeric() %>%
setNames(nam)
param_as_double = param_as_double[model$pin]
param_print = param_as_double %>%
t() %>%
as.data.frame() %>%
mutate(CL = signif(keD/V1,2),
id = id_plot) %>%
select(id, CL,T0,L0,Kd_DT,Kd_TL,kon_DT,kon_TL,keT,keL,keDT,keTL)
ev = eventTable(amount.units="nmol", time.units="days")
sample.points = c(seq(0, tmax, 0.1), 10^(-3:0)) # sample time, increment by 0.1
sample.points = sort(sample.points)
sample.points = unique(sample.points)
ev$add.sampling(sample.points)
if (infusion == FALSE) {
ev$add.dosing(dose=dose_nmol, start.time = tau, nbr.doses=floor(tmax/tau), dosing.interval=tau, dosing.to=compartment)
} else {
ev$add.dosing(dose=dose_nmol, start.time = tau, nbr.doses=floor(tmax/tau)+1, dosing.interval=tau, dosing.to=compartment, dur = tau)
}
sim = lumped.parameters.simulation(model, param_as_double, dose_nmol, tmax, tau, compartment, infusion)
thy = lumped.parameters.theory ( param_as_double, dose_nmol, tau, infusion)
sim_rename = sim
nam = names(sim_rename) %>%
str_replace_all("_sim$","")
names(sim_rename) = nam
sim_rename$type = "sim"
thy_rename = thy
nam = names(thy_rename) %>%
str_replace_all("_thy$","")
names(thy_rename) = nam
thy_rename$type = "thy"
compare = bind_rows(sim_rename,thy_rename) %>%
select(type,Dss,T0,L0,TL0,Ttotss,Lss,TLss,AFIR,SCIM)
init = model$init(param_as_double)
out = model$rxode$solve(model$repar(param_as_double), ev, init)
out = model$rxout(out)
out_plot = out %>%
select(time,D,T,DT,L,TL) %>%
gather(cmt,value,-time)
out_last = out_plot[(out$time==max(out$time)),]
g = ggplot(out_plot,aes(x=time,y=value, color = cmt, group= cmt))
g = g + geom_line()
g = g + geom_label(data = out_last, aes(label = cmt), show.legend = FALSE, hjust=1)
g = g + geom_vline(xintercept = tau, linetype = "dotted")
g = g + xgx_scale_x_time_units(units_dataset = "days", units_plot = "weeks")
g = g + xgx_scale_y_log10()
g = g + labs(y = "Concentration (nm)", color = "")
g = g + ggtitle(paste0( "id = ",param$id,
"\nAFIR_thy = ",signif(thy$AFIR_thy,2),
"\nAFIR_sim = ",signif(sim$AFIR_sim,2),
"\nSCIM_thy = ",signif(thy$SCIM_adhoc_thy,2),
"\nSCIM_sim = ",signif(sim$SCIM_sim,2)))
filepref = paste0("Parallel_Coord_Soluble_AFIRthy_lt_5_SCIMsim_ge_30_",id_plot)
g = xgx_save(5,5,dirs,filepref,"")
print(g)
#unfortunately, kable does not work properly inside for loop
print(t(param_print))
print(t(compare))
}
#```