-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_explainer.py
320 lines (261 loc) · 10.6 KB
/
test_explainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from unittest import TestCase
import numpy as np
import pandas as pd
from scipy.stats import ks_1samp, uniform, truncnorm
from lemon import LemonExplainer
from lemon.kernels import uniform_kernel, gaussian_kernel
from sklearn.compose import make_column_selector, make_column_transformer
from sklearn.datasets import load_iris, load_wine, load_linnerud
from sklearn.ensemble import RandomForestClassifier, HistGradientBoostingClassifier
from sklearn.multioutput import MultiOutputRegressor
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import OrdinalEncoder, StandardScaler
from scipy.special import gammainccinv
from functools import partial
# chosen by fair dice roll.
# guaranteed to be random.
random_state = 4
class TestExplainer(TestCase):
def setUp(self):
data = load_iris(as_frame=True)
X = data.data
y = pd.Series(np.array(data.target_names)[data.target])
y.name = "Class"
clf = RandomForestClassifier(random_state=random_state)
clf.fit(X, y)
self.X = X
self.y = y
self.clf = clf
def test_sample_hypersphere_uniform(self):
for dimensions in np.linspace(2, 50, 10).astype(int):
for radius_max in np.linspace(0.25, 1.0, 10):
X = np.array([
np.array([-1 for d in range(0, dimensions)]),
np.array([1 for d in range(0, dimensions)])
])
explainer = LemonExplainer(X, radius_max=radius_max)
sphere = explainer._sample_hypersphere(10000, dimensions)
distances = np.linalg.norm(sphere, axis=1) / radius_max
# Using a uniform kernel, the distance of each point in the sphere to the origin
# should be uniformly distributed (accounted for sphere divergence).
test = ks_1samp(distances * distances**(dimensions - 1), uniform.cdf)
assert test.statistic < 0.05
def test_sample_hypersphere_size(self):
for dimensions in np.linspace(2, 50, 10).astype(int):
for radius_max in np.linspace(0.25, 1.0, 10):
X = np.array([
np.array([-1 for d in range(0, dimensions)]),
np.array([1 for d in range(0, dimensions)])
])
explainer = LemonExplainer(X, radius_max=radius_max)
sphere = explainer._sample_hypersphere(10000, dimensions)
distances = np.linalg.norm(sphere, axis=1)
# All samples should fall strictly within the specified maximum radius
assert np.isclose(radius_max, np.max(distances), rtol=1e-02)
assert np.max(distances) < radius_max
def test_sample_hypersphere_uniform_circle(self):
for dimensions in np.linspace(2, 50, 10).astype(int):
for radius_max in np.linspace(0.25, 1.0, 10):
X = np.array([
np.array([-1 for d in range(0, dimensions)]),
np.array([1 for d in range(0, dimensions)])
])
explainer = LemonExplainer(X, radius_max=radius_max)
sphere = explainer._sample_hypersphere(10000, dimensions)
axis_aligned_variance = np.var(sphere, axis=0)
difference = np.abs(
np.min(axis_aligned_variance) -
np.max(axis_aligned_variance))
# All samples should have the same distribution in each direction
# (rotational symmetry)
assert difference < 1e-02
def test_sample_hypersphere_gaussian_circle(self):
for dimensions in np.linspace(2, 50, 10).astype(int):
for radius_max in np.linspace(0.25, 1.0, 10):
X = np.array([
np.array([-1 for d in range(0, dimensions)]),
np.array([1 for d in range(0, dimensions)])
])
p = 0.99
kernel_width = 1 / (2 * gammainccinv(dimensions / 2, (1 - p)))
kernel = lambda x: gaussian_kernel(x, kernel_width)
explainer = LemonExplainer(
X, distance_kernel=kernel, radius_max=radius_max)
sphere = explainer._sample_hypersphere(10000, dimensions)
axis_aligned_variance = np.var(sphere, axis=0)
difference = np.abs(
np.min(axis_aligned_variance) -
np.max(axis_aligned_variance))
# All samples should have the same distribution in each direction
# (rotational symmetry)
assert difference < 1e-02
def test_transform_uniform(self):
for dimensions in np.linspace(2, 50, 10).astype(int):
for radius_max in np.linspace(0.25, 1.0, 10):
X = np.array([
np.array([-1 for d in range(0, dimensions)]),
np.array([1 for d in range(0, dimensions)])
])
explainer = LemonExplainer(X, radius_max=radius_max)
kernel = uniform_kernel
sampling_kernel = explainer._transform(
kernel, dimensions, 5000, radius_max, adjust=False)
samples = sampling_kernel(np.random.uniform(size=50000)) / radius_max
# Samples should be uniformly distributed
test = ks_1samp(samples, uniform.cdf)
assert test.statistic < 0.05
def test_transform_normal(self):
for dimensions in np.linspace(2, 50, 10).astype(int):
for radius_max in np.linspace(0.25, 1.0, 10):
X = np.array([
np.array([-1 for d in range(0, dimensions)]),
np.array([1 for d in range(0, dimensions)])
])
explainer = LemonExplainer(X, radius_max=radius_max)
p = 0.99
kernel_width = 1 / (2 * gammainccinv(dimensions / 2, (1 - p)))
kernel = lambda x: gaussian_kernel(x, kernel_width=kernel_width)
sampling_kernel = explainer._transform(
kernel, dimensions, 5000, radius_max, adjust=False)
samples = sampling_kernel(np.random.uniform(size=50000)) / radius_max
# Samples should be (truncated)normally distributed
cdf = partial(truncnorm.cdf, a=0, b=1 / (kernel_width /
radius_max), scale=kernel_width / radius_max)
test = ks_1samp(samples, cdf)
assert test.statistic < 0.05
def test_explain_instance(self):
explainer = LemonExplainer(self.X, random_state=random_state)
rf_fi = self.clf.feature_importances_
lemon_fi = np.mean([
explainer.explain_instance(instance, self.clf.predict_proba)[
0].feature_contribution
for _, instance in self.X.iterrows()
], axis=0)
lemon_fi /= np.sum(np.abs(lemon_fi))
lemon_fi = np.abs(lemon_fi)
# Mean important features should be roughly proportional to random forest
# feature importance
assert (np.array_equal(np.argsort(rf_fi), np.argsort(lemon_fi)))
def test_explain_instance_scaling_invariant(self):
# Unscaled
explainer = LemonExplainer(self.X, random_state=random_state)
lemon_fi = np.mean([
explainer.explain_instance(instance, self.clf.predict_proba)[
0].feature_contribution
for _, instance in self.X.iterrows()
], axis=0)
lemon_fi /= np.sum(np.abs(lemon_fi))
lemon_fi = np.abs(lemon_fi)
# Scaled
data = load_iris(as_frame=True)
X_scaled = data.data
X_scaled.loc[:, 'petal width (cm)'] *= 1000
y = pd.Series(np.array(data.target_names)[data.target])
y.name = "Class"
clf_scaled = RandomForestClassifier(random_state=random_state)
clf_scaled.fit(X_scaled, y)
explainer_scaled = LemonExplainer(X_scaled, random_state=random_state)
lemon_fi_scaled = np.mean([
explainer_scaled.explain_instance(instance, clf_scaled.predict_proba)[
0].feature_contribution
for _, instance in X_scaled.iterrows()
], axis=0)
lemon_fi_scaled /= np.sum(np.abs(lemon_fi_scaled))
lemon_fi_scaled = np.abs(lemon_fi_scaled)
# Scaling features should have have no effect on which feature is most
# important
assert np.allclose(lemon_fi, lemon_fi_scaled, rtol=0.01, atol=0.01)
def test_explain_instance_plot(self):
explainer = LemonExplainer(self.X, random_state=random_state)
instance = self.X.iloc[-1, :]
exp = explainer.explain_instance(instance, self.clf.predict_proba)[0]
exp.show_in_notebook()
class TestExplainerCategorical(TestCase):
def setUp(self):
data = load_wine(as_frame=True)
X = data.data
X.loc[:, 'ash'] = pd.cut(X.loc[:, 'ash'], 4)
y = pd.Series(np.array(data.target_names)[data.target])
y.name = "Class"
self.categorical_features = [2]
ordinal_encoder = make_column_transformer(
(
OrdinalEncoder(
handle_unknown="use_encoded_value",
unknown_value=np.nan),
make_column_selector(dtype_include="category"),
),
remainder="passthrough",
verbose_feature_names_out=False,
)
clf = make_pipeline(
ordinal_encoder, HistGradientBoostingClassifier(
categorical_features=self.categorical_features, random_state=random_state)
)
clf.fit(X, y)
self.X = X
self.y = y
self.clf = clf
def test_explain_instance_plot(self):
explainer = LemonExplainer(
self.X,
radius_max=0.5,
categorical_features=self.categorical_features,
random_state=random_state)
instance = self.X.iloc[120, :]
exp = explainer.explain_instance(instance, self.clf.predict_proba)[0]
exp.show_in_notebook()
def test_explain_instance_without_training_data(self):
stats = {
column: dict(
zip(
*
np.unique(
self.X[column],
return_counts=True))) if i in self.categorical_features else self.X[column].std(
ddof=0)
for i, column in enumerate(self.X.columns)
}
explainer = LemonExplainer(
training_data_stats=stats,
radius_max=0.5,
categorical_features=self.categorical_features,
random_state=random_state)
instance = self.X.iloc[120, :]
exp = explainer.explain_instance(instance, self.clf.predict_proba)[0]
exp.show_in_notebook()
class TestExplainerRegression(TestCase):
def setUp(self):
data = load_linnerud(as_frame=True)
X = data.data
y = data.target
y.name = "Target"
regr = make_pipeline(
StandardScaler(),
MultiOutputRegressor(
LinearRegression()))
regr.fit(X, y)
self.X = X
self.y = y
self.regr = regr
def test_explain_instance_plot(self):
explainer = LemonExplainer(
self.X,
radius_max=0.5,
random_state=random_state)
instance = self.X.iloc[10, :]
exp = explainer.explain_instance(instance, self.regr.predict)[0]
exp.show_in_notebook()
def test_explain_instance_without_training_data(self):
stats = {
column: self.X[column].std(ddof=0)
for i, column in enumerate(self.X.columns)
}
explainer = LemonExplainer(
training_data_stats=stats,
radius_max=0.5,
random_state=random_state)
instance = self.X.iloc[10, :]
exp = explainer.explain_instance(instance, self.regr.predict)[0]
exp.show_in_notebook()