-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_PPT.py
58 lines (44 loc) · 2.05 KB
/
test_PPT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import argparse
from trainer import test_final_trajectory as trainer_ppt
import numpy as np
import random
import torch
def prepare_seed(rand_seed):
np.random.seed(rand_seed)
random.seed(rand_seed)
torch.manual_seed(rand_seed)
torch.cuda.manual_seed_all(rand_seed)
def parse_config():
parser = argparse.ArgumentParser(description='test')
parser.add_argument("--cuda", default=True)
parser.add_argument("--past_len", type=int, default=8, help="length of past (in timesteps)")
parser.add_argument("--future_len", type=int, default=12, help="length of future (in timesteps)")
parser.add_argument("--dim_embedding_key", type=int, default=24)
parser.add_argument("--data_scale", type=float, default=1)
parser.add_argument("--data_scale_old", type=float, default=1.86)
parser.add_argument("--train_b_size", type=int, default=512)
parser.add_argument("--test_b_size", type=int, default=4096)
parser.add_argument("--time_thresh", type=int, default=0)
parser.add_argument("--dist_thresh", type=int, default=100)
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument("--model_Pretrain", default='./training/...')
parser.add_argument("--reproduce", default=False)
parser.add_argument("--dataset_file", default="SDD", help="dataset file")
parser.add_argument("--dataset_name", default="sdd", help="dataset file")
parser.add_argument("--data_scene", default="eth", help="dataset file")
parser.add_argument("--info", type=str, default='', help='Name of training. '
'It will be used in tensorboard log and test folder')
return parser.parse_args()
def main(config):
if config.reproduce:
config.model_Pretrain = './training/Pretrained_Models/SDD/model_ALL'
print(config.model_Pretrain)
t = trainer_ppt.Trainer(config)
t.fit()
else:
print(config.model_Pretrain)
t = trainer_ppt.Trainer(config)
t.fit()
if __name__ == "__main__":
config = parse_config()
main(config)