-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_alter.py
405 lines (316 loc) · 15.6 KB
/
demo_alter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import os
#os.environ['PYOPENGL_PLATFORM'] = 'egl'
import cv2
import time
import torch
import joblib
import shutil
import colorsys
import argparse
import numpy as np
from tqdm import tqdm
from multi_person_tracker import MPT
from torch.utils.data import DataLoader
from lib.models.vibe import VIBE_Demo
from lib.utils.renderer import Renderer
from lib.dataset.inference import Inference
from lib.utils.smooth_pose import smooth_pose
from lib.data_utils.kp_utils import convert_kps
from lib.utils.pose_tracker import run_posetracker
from lib.utils.demo_utils import (
download_youtube_clip,
smplify_runner,
convert_crop_cam_to_orig_img,
prepare_rendering_results,
video_to_images,
images_to_video,
download_ckpt,
)
MIN_NUM_FRAMES = 25
def main(args):
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
video_file = args.vid_file
# ========= [Optional] download the youtube video ========= #
if video_file.startswith('https://www.youtube.com'):
print(f'Donwloading YouTube video \"{video_file}\"')
video_file = download_youtube_clip(video_file, '/tmp')
if video_file is None:
exit('Youtube url is not valid!')
print(f'YouTube Video has been downloaded to {video_file}...')
if not os.path.isfile(video_file):
exit(f'Input video \"{video_file}\" does not exist!')
output_path = os.path.join(args.output_folder, os.path.basename(video_file).replace('.mp4', ''))
os.makedirs(output_path, exist_ok=True)
image_folder, num_frames, img_shape = video_to_images(video_file, return_info=True)
print(f'Input video number of frames {num_frames}')
orig_height, orig_width = img_shape[:2]
total_time = time.time()
# ========= Run tracking ========= #
bbox_scale = 1.1
if args.tracking_method == 'pose':
if not os.path.isabs(video_file):
video_file = os.path.join(os.getcwd(), video_file)
tracking_results = run_posetracker(video_file, staf_folder=args.staf_dir, display=args.display)
else:
# run multi object tracker
mot = MPT(
device=device,
batch_size=args.tracker_batch_size,
display=args.display,
detector_type=args.detector,
output_format='dict',
yolo_img_size=args.yolo_img_size,
)
tracking_results = mot(image_folder)
# remove tracklets if num_frames is less than MIN_NUM_FRAMES
for person_id in list(tracking_results.keys()):
if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
del tracking_results[person_id]
# ========= Define VIBE model ========= #
model = VIBE_Demo(
seqlen=16,
n_layers=2,
hidden_size=1024,
add_linear=True,
use_residual=True,
).to(device)
# ========= Load pretrained weights ========= #
pretrained_file = download_ckpt(use_3dpw=False)
ckpt = torch.load(pretrained_file)
print(f'Performance of pretrained model on 3DPW: {ckpt["performance"]}')
ckpt = ckpt['gen_state_dict']
model.load_state_dict(ckpt, strict=False)
model.eval()
print(f'Loaded pretrained weights from \"{pretrained_file}\"')
# ========= Run VIBE on each person ========= #
print(f'Running VIBE on each tracklet...')
vibe_time = time.time()
vibe_results = {}
for person_id in tqdm(list(tracking_results.keys())):
bboxes = joints2d = None
if args.tracking_method == 'bbox':
bboxes = tracking_results[person_id]['bbox']
elif args.tracking_method == 'pose':
joints2d = tracking_results[person_id]['joints2d']
frames = tracking_results[person_id]['frames']
dataset = Inference(
image_folder=image_folder,
frames=frames,
bboxes=bboxes,
joints2d=joints2d,
scale=bbox_scale,
)
bboxes = dataset.bboxes
frames = dataset.frames
has_keypoints = True if joints2d is not None else False
dataloader = DataLoader(dataset, batch_size=args.vibe_batch_size, num_workers=16)
with torch.no_grad():
pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [], [], [], [], [], []
for batch in dataloader:
if has_keypoints:
batch, nj2d = batch
norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))
batch = batch.unsqueeze(0)
batch = batch.to(device)
batch_size, seqlen = batch.shape[:2]
output = model(batch)[-1]
pred_cam.append(output['theta'][:, :, :3].reshape(batch_size * seqlen, -1))
pred_verts.append(output['verts'].reshape(batch_size * seqlen, -1, 3))
pred_pose.append(output['theta'][:,:,3:75].reshape(batch_size * seqlen, -1))
pred_betas.append(output['theta'][:, :,75:].reshape(batch_size * seqlen, -1))
pred_joints3d.append(output['kp_3d'].reshape(batch_size * seqlen, -1, 3))
pred_cam = torch.cat(pred_cam, dim=0)
pred_verts = torch.cat(pred_verts, dim=0)
pred_pose = torch.cat(pred_pose, dim=0)
pred_betas = torch.cat(pred_betas, dim=0)
pred_joints3d = torch.cat(pred_joints3d, dim=0)
del batch
# ========= [Optional] run Temporal SMPLify to refine the results ========= #
if args.run_smplify and args.tracking_method == 'pose':
norm_joints2d = np.concatenate(norm_joints2d, axis=0)
norm_joints2d = convert_kps(norm_joints2d, src='staf', dst='spin')
norm_joints2d = torch.from_numpy(norm_joints2d).float().to(device)
# Run Temporal SMPLify
update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
pred_rotmat=pred_pose,
pred_betas=pred_betas,
pred_cam=pred_cam,
j2d=norm_joints2d,
device=device,
batch_size=norm_joints2d.shape[0],
pose2aa=False,
)
# update the parameters after refinement
print(f'Update ratio after Temporal SMPLify: {update.sum()} / {norm_joints2d.shape[0]}')
pred_verts = pred_verts.cpu()
pred_cam = pred_cam.cpu()
pred_pose = pred_pose.cpu()
pred_betas = pred_betas.cpu()
pred_joints3d = pred_joints3d.cpu()
pred_verts[update] = new_opt_vertices[update]
pred_cam[update] = new_opt_cam[update]
pred_pose[update] = new_opt_pose[update]
pred_betas[update] = new_opt_betas[update]
pred_joints3d[update] = new_opt_joints3d[update]
elif args.run_smplify and args.tracking_method == 'bbox':
print('[WARNING] You need to enable pose tracking to run Temporal SMPLify algorithm!')
print('[WARNING] Continuing without running Temporal SMPLify!..')
# ========= Save results to a pickle file ========= #
pred_cam = pred_cam.cpu().numpy()
pred_verts = pred_verts.cpu().numpy()
pred_pose = pred_pose.cpu().numpy()
pred_betas = pred_betas.cpu().numpy()
pred_joints3d = pred_joints3d.cpu().numpy()
# Runs 1 Euro Filter to smooth out the results
if args.smooth:
min_cutoff = args.smooth_min_cutoff # 0.004
beta = args.smooth_beta # 1.5
print(f'Running smoothing on person {person_id}, min_cutoff: {min_cutoff}, beta: {beta}')
pred_verts, pred_pose, pred_joints3d = smooth_pose(pred_pose, pred_betas,
min_cutoff=min_cutoff, beta=beta)
orig_cam = convert_crop_cam_to_orig_img(
cam=pred_cam,
bbox=bboxes,
img_width=orig_width,
img_height=orig_height
)
output_dict = {
'pred_cam': pred_cam,
'orig_cam': orig_cam,
'verts': pred_verts,
'pose': pred_pose,
'betas': pred_betas,
'joints3d': pred_joints3d,
'joints2d': joints2d,
'bboxes': bboxes,
'frame_ids': frames,
}
vibe_results[person_id] = output_dict
del model
end = time.time()
fps = num_frames / (end - vibe_time)
print(f'VIBE FPS: {fps:.2f}')
total_time = time.time() - total_time
print(f'Total time spent: {total_time:.2f} seconds (including model loading time).')
print(f'Total FPS (including model loading time): {num_frames / total_time:.2f}.')
print(f'Saving output results to \"{os.path.join(output_path, "vibe_output.pkl")}\".')
joblib.dump(vibe_results, os.path.join(output_path, "vibe_output.pkl"))
if not args.no_render:
# ========= Render results as a single video ========= #
renderer = Renderer(resolution=(orig_width, orig_height), orig_img=True, wireframe=args.wireframe)
output_img_folder = f'{image_folder}_output'
os.makedirs(output_img_folder, exist_ok=True)
print(f'Rendering output video, writing frames to {output_img_folder}')
# prepare results for rendering
frame_results = prepare_rendering_results(vibe_results, num_frames)
mesh_color = {k: colorsys.hsv_to_rgb(np.random.rand(), 0.5, 1.0) for k in vibe_results.keys()}
image_file_names = sorted([
os.path.join(image_folder, x)
for x in os.listdir(image_folder)
if x.endswith('.png') or x.endswith('.jpg')
])
for frame_idx in tqdm(range(len(image_file_names))):
img_fname = image_file_names[frame_idx]
img = cv2.imread(img_fname)
if args.sideview:
side_img = np.zeros_like(img)
for person_id, person_data in frame_results[frame_idx].items():
frame_verts = person_data['verts']
frame_cam = person_data['cam']
mc = mesh_color[person_id]
mesh_filename = None
if args.save_obj:
mesh_folder = os.path.join(output_path, 'meshes', f'{person_id:04d}')
os.makedirs(mesh_folder, exist_ok=True)
mesh_filename = os.path.join(mesh_folder, f'{frame_idx:06d}.obj')
img = renderer.render(
img,
frame_verts,
cam=frame_cam,
color=mc,
mesh_filename=mesh_filename,
)
if args.sideview:
side_img = renderer.render(
side_img,
frame_verts,
cam=frame_cam,
color=mc,
angle=270,
axis=[0,1,0],
)
if args.sideview:
img = np.concatenate([img, side_img], axis=1)
cv2.imwrite(os.path.join(output_img_folder, f'{frame_idx:06d}.png'), img)
if args.display:
cv2.imshow('Video', img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if args.display:
cv2.destroyAllWindows()
# ========= Save rendered video ========= #
vid_name = os.path.basename(video_file)
save_name = f'{vid_name.replace(".mp4", "")}_vibe_result.mp4'
save_name = os.path.join(output_path, save_name)
print(f'Saving result video to {save_name}')
images_to_video(img_folder=output_img_folder, output_vid_file=save_name)
shutil.rmtree(output_img_folder)
shutil.rmtree(image_folder)
print('================= END =================')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--vid_file', type=str,
help='input video path or youtube link')
parser.add_argument('--output_folder', type=str,
help='output folder to write results')
parser.add_argument('--tracking_method', type=str, default='bbox', choices=['bbox', 'pose'],
help='tracking method to calculate the tracklet of a subject from the input video')
parser.add_argument('--detector', type=str, default='yolo', choices=['yolo', 'maskrcnn'],
help='object detector to be used for bbox tracking')
parser.add_argument('--yolo_img_size', type=int, default=416,
help='input image size for yolo detector')
# parser.add_argument('--tracker_batch_size', type=int, default=12,
parser.add_argument('--tracker_batch_size', type=int, default=3,
help='batch size of object detector used for bbox tracking')
parser.add_argument('--staf_dir', type=str, default='/home/mkocabas/developments/openposetrack',
help='path to directory STAF pose tracking method installed.')
# parser.add_argument('--vibe_batch_size', type=int, default=450,
parser.add_argument('--vibe_batch_size', type=int, default=16,
help='batch size of VIBE')
parser.add_argument('--display', action='store_true',
help='visualize the results of each step during demo')
parser.add_argument('--run_smplify', action='store_true',
help='run smplify for refining the results, you need pose tracking to enable it')
parser.add_argument('--no_render', action='store_true',
help='disable final rendering of output video.')
parser.add_argument('--wireframe', action='store_true',
help='render all meshes as wireframes.')
parser.add_argument('--sideview', action='store_true',
help='render meshes from alternate viewpoint.')
parser.add_argument('--save_obj', action='store_true',
help='save results as .obj files.')
parser.add_argument('--smooth', action='store_true',
help='smooth the results to prevent jitter')
parser.add_argument('--smooth_min_cutoff', type=float, default=0.004,
help='one euro filter min cutoff. '
'Decreasing the minimum cutoff frequency decreases slow speed jitter')
parser.add_argument('--smooth_beta', type=float, default=0.7,
help='one euro filter beta. '
'Increasing the speed coefficient(beta) decreases speed lag.')
args = parser.parse_args()
main(args)