-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
227 lines (186 loc) · 8.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import argparse
import numpy as np
import random
import torch
import torch.optim as optim
import torch.distributed as dist
import torch.multiprocessing as mp
from torchsparse import SparseTensor
from dataset.sk_dataloader import SK_Dataloader
from dataset.nu_dataloader import NU_Dataloader
from network.spvcnn import SPVCNN
from network.minkunet import MinkUNet
def train(rank, world_size, MAX_ITER, directory, args):
####################################### Traininig ###############################################
# set random seed
random.seed(1 + rank)
np.random.seed(1 + rank)
torch.manual_seed(7122)
# Initialize DDP
if world_size > 1:
dist.init_process_group(backend='nccl', init_method='tcp://localhost:{}'.format(args.host_num),
world_size=world_size, rank=rank)
# Set device
if world_size > 1:
torch.cuda.set_device(rank)
pytorch_device = torch.device('cuda', rank)
else:
pytorch_device = torch.device('cuda:0')
# Network
if 'SPVCNN' in args.model_name:
if args.dataset_name == 'SK':
model = SPVCNN(class_num=19)
if args.dataset_name == 'NU':
model = SPVCNN(class_num=16)
if 'Mink' in args.model_name:
if args.dataset_name == 'SK':
model = MinkUNet(class_num=19)
if args.dataset_name == 'NU':
model = MinkUNet(class_num=16)
model.to(pytorch_device)
if world_size > 1:
model = \
torch.nn.parallel.DistributedDataParallel(model,
device_ids=[rank],
output_device=rank)
# Optimizer
optimizer = optim.Adam(model.parameters())
# Load training statics
curr_iter = 0
ep_id = 0
PATH = directory + '/current.pt'
map_location = {'cuda:%d' % 0: 'cuda:%d' % rank}
if os.path.exists(PATH):
checkpoint = torch.load(PATH, map_location=map_location)
if world_size > 1:
model.module.load_state_dict(checkpoint['model_state_dict'], strict=True)
else:
model.load_state_dict(checkpoint['model_state_dict'], strict=True)
curr_iter = checkpoint['iteration']
ep_id = checkpoint['ep_id']
if rank == 0:
print("Restored from: {}".format(PATH))
elif args.r_id > 0:
# Load weights of last trained model
if args.r_id == 1:
PATH = 'check_points/{}/{}/0r/current.pt'.format(args.dataset_name, args.model_name)
else:
PATH = 'check_points/{}/{}/{}/{}/{}r/current.pt'.format(args.dataset_name, args.model_name, args.label_unit, args.metric_name, args.r_id - 1)
checkpoint = torch.load(PATH, map_location=map_location)
if world_size > 1:
model.module.load_state_dict(checkpoint['model_state_dict'], strict=True)
else:
model.load_state_dict(checkpoint['model_state_dict'], strict=True)
if rank == 0:
print("Restored from: {}".format(PATH))
if world_size > 1:
dist.barrier()
# Dataset
if args.r_id == 0:
if args.dataset_name == 'SK':
sampler, train_data_loader = SK_Dataloader(gpu_num = world_size, gpu_rank = rank).train_data_loader_0r()
if args.dataset_name == 'NU':
sampler, train_data_loader = NU_Dataloader(gpu_num = world_size, gpu_rank = rank).train_data_loader_0r()
elif args.metric_name == 'full':
if args.dataset_name == 'SK':
sampler, train_data_loader = SK_Dataloader(gpu_num = world_size, gpu_rank = rank).train_data_loader_full()
if args.dataset_name == 'NU':
sampler, train_data_loader = NU_Dataloader(gpu_num = world_size, gpu_rank = rank).train_data_loader_full()
elif args.label_unit == 'fr':
if args.dataset_name == 'SK':
sampler, train_data_loader = SK_Dataloader(gpu_num = world_size, gpu_rank = rank).train_data_loader_fr(model_name=args.model_name, metric_name=args.metric_name, r_id=args.r_id)
if args.dataset_name == 'NU':
sampler, train_data_loader = NU_Dataloader(gpu_num = world_size, gpu_rank = rank).train_data_loader_fr(model_name=args.model_name, metric_name=args.metric_name, r_id=args.r_id)
elif args.label_unit == 'sv':
if args.dataset_name == 'SK':
sampler, train_data_loader = SK_Dataloader(gpu_num = world_size, gpu_rank = rank).train_data_loader_sv(model_name=args.model_name, metric_name=args.metric_name, r_id=args.r_id)
if args.dataset_name == 'NU':
sampler, train_data_loader = NU_Dataloader(gpu_num = world_size, gpu_rank = rank).train_data_loader_sv(model_name=args.model_name, metric_name=args.metric_name, r_id=args.r_id)
# Training process
is_training = True
while(is_training):
model.train()
if sampler:
sampler.set_epoch(ep_id)
for i, batch in enumerate(train_data_loader):
if rank == 0:
print("Iteration: {}".format(curr_iter))
# Load data
coords_v_b = batch['coords_v_b'].cuda()
feats_v_b = batch['feats_v_b'].cuda()
labels_v_b = batch['labels_v_b'].cuda()
optimizer.zero_grad()
torch.cuda.synchronize()
logits_v_b, _ = model(SparseTensor(feats_v_b, coords_v_b))
loss = torch.nn.functional.cross_entropy(logits_v_b, labels_v_b, ignore_index=255, reduction='mean')
loss.backward()
# Update
optimizer.step()
if curr_iter >= MAX_ITER:
is_training = False
break
curr_iter += 1
if rank == 0:
print('loss: {}'.format(loss.item()))
if curr_iter % 500 == 0:
torch.save({
'model_state_dict': model.module.state_dict() if world_size > 1 else model.state_dict(),
'iteration': curr_iter,
'ep_id': ep_id,
}, directory + '/current.pt')
torch.cuda.synchronize()
ep_id += 1
if world_size > 1:
dist.destroy_process_group()
def main(args):
# Training statics
MAX_ITER = 20000
world_size = torch.cuda.device_count()
directory = 'check_points/{}/{}'.format(args.dataset_name, args.model_name)
if not os.path.exists(directory):
os.makedirs(directory)
directory = 'check_points/{}/{}/{}'.format(args.dataset_name, args.model_name, args.label_unit)
if not os.path.exists(directory):
os.makedirs(directory)
if args.r_id == 0:
directory = 'check_points/{}/{}/0r'.format(args.dataset_name, args.model_name)
if not os.path.exists(directory):
os.makedirs(directory)
elif args.metric_name == 'full':
directory = 'check_points/{}/{}/full'.format(args.dataset_name, args.model_name)
if not os.path.exists(directory):
os.makedirs(directory)
else:
directory = 'check_points/{}/{}/{}/{}'.format(args.dataset_name, args.model_name, args.label_unit, args.metric_name)
if not os.path.exists(directory):
os.makedirs(directory)
directory = 'check_points/{}/{}/{}/{}/{}r'.format(args.dataset_name, args.model_name, args.label_unit, args.metric_name, args.r_id)
if not os.path.exists(directory):
os.makedirs(directory)
if world_size > 1:
mp.spawn(train,
args=(world_size, MAX_ITER, directory, args,),
nprocs=world_size,
join=True)
else:
train(0, world_size, MAX_ITER, directory, args)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description = 'Train')
parser.add_argument('--dataset_name', type = str, required = True,
help = 'name of the used dataset, [SK: semantic-kitti, NU: nuScenes]')
parser.add_argument('--model_name', type = str, required = True,
help = 'name of the current model to be trained, [SPVCNN, Mink]')
parser.add_argument('--label_unit', type = str, required = True,
help = '[fr: frame-based, sv: supervoxel-based]')
parser.add_argument('--metric_name', type = str, required = True,
help = 'name of the active selection metric used for training')
parser.add_argument('--r_id', type = int, required = True,
help = 'current training r_id, -1 for fully-supervised setting.')
parser.add_argument('--host_num', type = str, default = 7112)
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
print("use_cuda: {}".format(use_cuda))
if use_cuda is False:
raise ValueError("CUDA is not available!")
main(args)