@@ -24,7 +24,7 @@ def implicit_stochastic(f):
24
24
25
25
@scope .define
26
26
def rng_from_seed (seed ):
27
- return np .random .RandomState (seed )
27
+ return np .random .default_rng (seed )
28
28
29
29
30
30
# -- UNIFORM
@@ -95,9 +95,9 @@ def qlognormal(mu, sigma, q, rng=None, size=()):
95
95
def randint (low , high = None , rng = None , size = ()):
96
96
"""
97
97
See np.random.randint documentation.
98
- rng = random number generator, typically equals np.random.mtrand.RandomState
98
+ rng = random number generator, typically equals np.random.Generator
99
99
"""
100
- return rng .randint (low , high , size )
100
+ return rng .integers (low , high , size )
101
101
102
102
103
103
@implicit_stochastic
@@ -107,7 +107,7 @@ def randint_via_categorical(p, rng=None, size=()):
107
107
Only used in tpe because of the chaotic API based on names.
108
108
# ideally we would just use randint above, but to use priors this is a wrapper of
109
109
categorical
110
- rng = random number generator, typically equals np.random.mtrand.RandomState
110
+ rng = random number generator, typically equals np.random.Generator
111
111
"""
112
112
113
113
return scope .categorical (p , rng , size )
@@ -177,7 +177,7 @@ def recursive_set_rng_kwarg(expr, rng=None):
177
177
uniform(0, 1) -> uniform(0, 1, rng=rng)
178
178
"""
179
179
if rng is None :
180
- rng = np .random .RandomState ()
180
+ rng = np .random .default_rng ()
181
181
lrng = as_apply (rng )
182
182
for node in dfs (expr ):
183
183
if node .name in implicit_stochastic_symbols :
@@ -195,14 +195,14 @@ def sample(expr, rng=None, **kwargs):
195
195
Parameters:
196
196
expr - a pyll expression to be evaluated
197
197
198
- rng - a np.random.RandomState instance
199
- default: `np.random.RandomState ()`
198
+ rng - a np.random.Generator instance
199
+ default: `np.random.default_rng ()`
200
200
201
201
**kwargs - optional arguments passed along to
202
202
`hyperopt.pyll.rec_eval`
203
203
204
204
"""
205
205
if rng is None :
206
- rng = np .random .RandomState ()
206
+ rng = np .random .default_rng ()
207
207
foo = recursive_set_rng_kwarg (clone (as_apply (expr )), as_apply (rng ))
208
208
return rec_eval (foo , ** kwargs )
0 commit comments