-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdmkm.cpp
547 lines (488 loc) · 16.2 KB
/
dmkm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
////////////////////////////////////// MIT License ////////////////////////////////////////////
//
// Projekt : [Problem maksymalnego przepływu – implementacja algorytmu DMKM w języku C++]
// Plik : [dmkm.cpp]
// Streszczenie : [Implementacja algorytmu DMKM w języku C++]
//
// Utworzony: 21/06/2021
// Autor: [Mykhailo Morrison] <mailto:[mykhailo.morrison@gmail.com]>
// @license http://www.opensource.org/licenses/mit-license.html MIT License
////////////////////////////////////////////////////////////////////////////////////////////////
#include <iostream>
#include <list>
#include <unordered_map>
#include <vector>
#include <algorithm>
using namespace std;
const int SOURCE_N = 0; //numer wierzchołka źródła (s)
const int SINK_N = 10000; //numer wierzchołka odpływu (t)
//Klasa łuku
class Edge {
private:
int u; //Pierwszy wierzchołek łuku
int v; //Drugi wierzchołek łuku
int capacity; //Przepustowość łuku
int flow; //Wartość przepływu tego łuku
public:
//Konstruktory, gettery, settery
Edge(int u, int v, int capacity) : u(u), v(v), capacity(capacity) {}
int getU() const {
return u;
}
void setU(int newU) {
u = newU;
}
int getV() const {
return v;
}
void setV(int newV) {
v = newV;
}
int getCapacity() const {
return capacity;
}
int getFlow() const {
return flow;
}
void setFlow(int newFlow) {
flow = newFlow;
}
};
//Klasa wierzchołka
class Vertex {
private:
int inpot; //Wejściowy potencjał
int outpot; //Wyjściowy potencjał
int poten; //Potencjał (min{inpot, outpot})
int inFlow; //Wartość wejściowego przepływu
int outFlow; //Wartość wyjściowego przepływu
int layer; //Numer warstwy tego wierzchołka
bool used = false; //Skreślenie wierzchołka, przydatne w funkcji SATURATE
public:
//Gettery, settery
int getInpot() const {
return inpot;
}
void setInpot(int newInpot) {
inpot = newInpot;
}
int getOutpot() const {
return outpot;
}
void setOutpot(int newOutpot) {
outpot = newOutpot;
}
int getPoten() const {
return poten;
}
void setPoten(int newPoten) {
poten = newPoten;
}
int getLayer() const {
return layer;
}
void setLayer(int setNewLayer) {
layer = setNewLayer;
}
int getInflow() const {
return inFlow;
}
void setInflow(int newInFlow) {
inFlow = newInFlow;
}
int getOutFlow() const {
return outFlow;
}
void setOutflow(int newOutFlow) {
outFlow = newOutFlow;
}
bool isUsed() const {
return used;
}
void setUsed(bool newIsUsed) {
used = newIsUsed;
}
};
//Klasa sieci
class Graph {
public:
unordered_map<int, Vertex*> vertices; //Lista wierzchołków w postaci par, w których pierwszy element - numer wierzchołka, drugi - jego obiekt
unordered_map<int, Edge*> edges; //Lista łuków w postaci par, w których pierwszy element - numer łuku, drugi - jego obiekt
Vertex* vertex; //Zmienna pomocnicza
Edge* edge; //Zmienna pomocnicza
int inpot = 0; //Zmienna pomocnicza
int outpot = 0; //Zmienna pomocnicza
bool isNotSaturated; //Flaga wskazująca na to, że sieć jest nienasycona
//Dodajemy krawędzie do grafu
void addEdges(int e[][3], int countOfEdges) {
for (int i = 0; i < countOfEdges; i++) {
edge = new Edge(e[i][0], e[i][1], e[i][2]);
edge->setFlow(0);
edges.insert(make_pair(i, edge));
}
for (auto& it : edges) {
if (vertices.count(it.second->getU()) == 0) {
vertex = new Vertex();
vertices.insert(make_pair(it.second->getU(), vertex));
}
if (vertices.count(it.second->getV()) == 0) {
vertex = new Vertex();
vertices.insert(make_pair(it.second->getV(), vertex));
}
}
for (auto& v : vertices) {
for (auto& e : edges) {
if (e.second->getV() == v.first) {
inpot += e.second->getCapacity();
}
if (e.second->getU() == v.first) {
outpot += e.second->getCapacity();
}
}
vertices[v.first]->setInpot(inpot);
vertices[v.first]->setOutpot(outpot);
if (v.first != SOURCE_N && v.first != SINK_N) {
vertices[v.first]->setPoten(min(vertices[v.first]->getInpot(), vertices[v.first]->getOutpot()));
}
else if (v.first == SOURCE_N) {
vertices[SOURCE_N]->setPoten(vertices[SOURCE_N]->getOutpot());
}
else {
vertices[SINK_N]->setPoten(vertices[SINK_N]->getInpot());
}
inpot = 0;
outpot = 0;
}
}
};
//Obliczanie potencjałów wejściowych wierzchołka v
void recalculateInpot(Graph* lGraph, int v) {
int inpot = 0;
for (auto& it : lGraph->edges) {
if (!lGraph->vertices[it.second->getU()]->isUsed() && !lGraph->vertices[it.second->getV()]->isUsed() && it.second->getV() == v) {
inpot += it.second->getCapacity() - it.second->getFlow();
}
}
lGraph->vertices[v]->setInpot(inpot);
}
//Obliczanie potencjałów wyjściowych wierzchołka v
void recalculateOutpot(Graph* lGraph, int v) {
int outpot = 0;
for (auto& it : lGraph->edges) {
if (!lGraph->vertices[it.second->getU()]->isUsed() && !lGraph->vertices[it.second->getV()]->isUsed() && it.second->getU() == v) {
outpot += it.second->getCapacity() - it.second->getFlow();
}
}
lGraph->vertices[v]->setOutpot(outpot);
}
//Obliczanie potencjałów wierzchołka v
void recalculatePoten(Graph* lGraph, int v, int s, int t) {
if (v != s && v != t) {
lGraph->vertices[v]->setPoten(min(lGraph->vertices[v]->getInpot(), lGraph->vertices[v]->getOutpot()));
}
else if (v == s) {
lGraph->vertices[s]->setPoten(lGraph->vertices[s]->getOutpot());
}
else {
lGraph->vertices[t]->setPoten(lGraph->vertices[t]->getInpot());
}
}
//Wybiera wierzchołek odniesienia i zwraca numer warstwy.
void refnode(Graph* lGraph, int layersCount, int* r, int* rlayer, int s, int t) {
lGraph->vertices[s]->setPoten(lGraph->vertices[s]->getOutpot());
lGraph->vertices[t]->setPoten(lGraph->vertices[t]->getInpot());
if (lGraph->vertices[s]->getPoten() < lGraph->vertices[t]->getPoten()) {
(*r) = s;
(*rlayer) = 1;
}
else {
(*r) = t;
(*rlayer) = layersCount;
}
for (auto& it : lGraph->vertices) {
if (!it.second->isUsed() && it.first != s && it.first != t) {
it.second->setPoten(min(it.second->getInpot(), it.second->getOutpot()));
if (it.second->getPoten() < lGraph->vertices[(*r)]->getPoten()) {
(*r) = it.first;
(*rlayer) = lGraph->vertices[it.first]->getLayer();
}
}
}
}
//Metoda Push-Pull przesyłająca towar między warstwami.
void push(Graph* lGraph, int i) {
int avacap = 0;
for (auto& it : lGraph->vertices) {
if (!it.second->isUsed() && it.second->getLayer() == i && it.second->getOutFlow() != 0) {
for (auto& ed : lGraph->edges) {
if (!lGraph->vertices[ed.second->getV()]->isUsed() && ed.second->getU() == it.first) {
avacap = ed.second->getCapacity() - ed.second->getFlow();
if (avacap > 0) {
if (avacap > it.second->getOutFlow()) {
avacap = it.second->getOutFlow();
}
ed.second->setFlow(ed.second->getFlow() + avacap);
lGraph->vertices[ed.second->getU()]->setOutflow(lGraph->vertices[ed.second->getU()]->getOutFlow() - avacap);
lGraph->vertices[ed.second->getV()]->setOutflow(lGraph->vertices[ed.second->getV()]->getOutFlow() + avacap);
lGraph->vertices[ed.second->getU()]->setOutpot(lGraph->vertices[ed.second->getU()]->getOutpot() - avacap);
lGraph->vertices[ed.second->getV()]->setInpot(lGraph->vertices[ed.second->getV()]->getInpot() - avacap);
}
}
}
}
}
}
void pull(Graph* lGraph, int j) {
int avacap = 0;
for (auto& it : lGraph->vertices) {
if (!it.second->isUsed() && it.second->getLayer() == j && it.second->getInflow() != 0) {
for (auto& ed : lGraph->edges) {
if (!lGraph->vertices[ed.second->getU()]->isUsed() && ed.second->getV() == it.first) {
avacap = ed.second->getCapacity() - ed.second->getFlow();
if (avacap > 0) {
if (avacap > it.second->getInflow()) {
avacap = it.second->getInflow();
}
ed.second->setFlow(ed.second->getFlow() + avacap);
lGraph->vertices[ed.second->getV()]->setInflow(lGraph->vertices[ed.second->getV()]->getInflow() - avacap);
lGraph->vertices[ed.second->getU()]->setInflow(lGraph->vertices[ed.second->getU()]->getInflow() + avacap);
lGraph->vertices[ed.second->getU()]->setOutpot(lGraph->vertices[ed.second->getU()]->getOutpot() - avacap);
lGraph->vertices[ed.second->getV()]->setInpot(lGraph->vertices[ed.second->getV()]->getInpot() - avacap);
}
}
}
}
}
}
//Lista następników wierzchołka v
vector<int> getSucc(Graph* graph, int v) {
vector<int> s;
for (auto& e : graph->edges) {
if (!graph->vertices[e.second->getV()]->isUsed() && e.second->getU() == v) {
s.push_back(e.second->getV());
}
}
return s;
}
//Lista poprzedników wierzchołka v
vector<int> getPred(Graph* graph, int v) {
vector<int> s;
for (auto& e : graph->edges) {
if (!graph->vertices[e.second->getU()]->isUsed() && e.second->getV() == v) {
s.push_back(e.second->getU());
}
}
return s;
}
//Wydzielenie sieci warstwowej
void layer(Graph* graph, Graph* lGraph, int& layersCount, bool& stpath) {
stpath = true;
unordered_map<int, int> labels;
unordered_map<int, vector<int>> succ; //zbiory następników
unordered_map<int, vector<int>> pred; //zbiory poprzedników
unordered_map<int, vector<int>> layersWithVertices; //zbiór warstw z wierzchołkami
for (auto& v : graph->vertices) {
labels[v.first] = -1;
v.second->setUsed(false);
}
layersWithVertices[1].push_back(SOURCE_N);
labels[SOURCE_N] = 1;
int i = 1; //numer bieżącej warstwy
//Dodajemy użyteczne łuki
while (!layersWithVertices[i].empty() && labels[SINK_N] == -1) {
for (auto& v : layersWithVertices[i]) {
for (auto& e : graph->edges) {
if (e.second->getU() == v && e.second->getFlow() < e.second->getCapacity() && (labels[e.second->getV()] == -1 || labels[e.second->getV()] == i + 1)) {
layersWithVertices[i + 1].push_back(e.second->getV());
labels[e.second->getV()] = i + 1;
succ[e.second->getU()].push_back(e.second->getV());
pred[e.second->getV()].push_back(e.second->getU());
lGraph->edges.insert(e);
}
if (e.second->getV() == v && e.second->getFlow() > 0 && (labels[e.second->getU()] == -1 || labels[e.second->getU()] == i + 1)) {
layersWithVertices[i + 1].push_back(e.second->getU());
labels[e.second->getU()] = i + 1;
succ[e.second->getV()].push_back(e.second->getU());
pred[e.second->getU()].push_back(e.second->getV());
for (auto& ed : graph->edges) {
if (ed.second->getU() == v && ed.second->getV() == e.second->getV()) {
lGraph->edges.insert(ed);
}
}
}
}
}
i++;
}
layersCount = i;
if (labels[SINK_N] == -1) {
stpath = false; //false - droga nie istnieje
}
else {
int j = i;
vector<int> edgesToRemove;
while (j != 1) {
for (auto& w : layersWithVertices[j]) {
if (succ[w].empty() && w != SINK_N) {
for (auto& x : pred[w]) {
for (auto& it : lGraph->edges) {
if (it.second->getU() == x && it.second->getV() == w) {
edgesToRemove.push_back(it.first);
}
}
for (auto& rem : edgesToRemove) {
lGraph->edges.erase(rem);
}
succ[x].erase(remove(succ[x].begin(), succ[x].end(), w), succ[x].end());
}
layersWithVertices[j].erase(remove(layersWithVertices[j].begin(), layersWithVertices[j].end(), w), layersWithVertices[j].end());
pred[w].clear();
pred[w].shrink_to_fit(); //pred(w) teraz jest pusty
}
}
j--;
}
//Dodajemy wierzchołki do sieci warstwowej
Vertex* vert;
for (auto& l : layersWithVertices) {
for (auto& v : l.second) {
vert = graph->vertices[v];
vert->setLayer(l.first);
lGraph->vertices.insert(make_pair(v, vert));
}
}
}
}
//Nasycenie sieci warstwowej
void saturate(Graph* lGraph, int layersCount) {
int r;
int rlayer;
vector<int> succ;
vector<int> pred;
//Olbliczamy potencjały i resetujemy flagę used
for (auto& it : lGraph->vertices) {
recalculateInpot(lGraph, it.first);
recalculateOutpot(lGraph, it.first);
it.second->setUsed(false);
}
//Resetujemy przepływy
for (auto& it : lGraph->edges) {
it.second->setFlow(0);
}
lGraph->isNotSaturated = true;
while (lGraph->isNotSaturated) { //Dopóki sieć jest nienasycona
refnode(lGraph, layersCount, &r, &rlayer, SOURCE_N, SINK_N); //Wybieramy wierzchołek odniesienia r i numer jego warstwy.
if (lGraph->vertices[r]->getPoten() != 0) {
lGraph->vertices[r]->setInflow(lGraph->vertices[r]->getPoten());
lGraph->vertices[r]->setOutflow(lGraph->vertices[r]->getPoten());
for (auto& it : lGraph->vertices) {
if (!it.second->isUsed() && it.first != r) {
lGraph->vertices[it.first]->setInflow(0);
lGraph->vertices[it.first]->setOutflow(0);
}
}
//Metoda Push-Pull
for (int k = rlayer; k <= layersCount - 1; k++) {
push(lGraph, k);
}
for (int j = rlayer; j >= 2; j--) {
pull(lGraph, j);
}
}
if (lGraph->vertices[r]->getPoten() != 0 || r != SOURCE_N && r != SINK_N) {
//Następniki i poprzedniki wierzchołka r
succ = getSucc(lGraph, r);
pred = getPred(lGraph, r);
//Skreślamy wierzchołek r
lGraph->vertices[r]->setUsed(true);
//Obliczamy potencjały poprzedników i następników
for (auto& v : succ) {
recalculateInpot(lGraph, v);
}
for (auto& v : pred) {
recalculateOutpot(lGraph, v);
}
}
else {
lGraph->isNotSaturated = false;
}
}
}
//Funkcja obliczająca maksymalny przepływ
int getMaxFlow(int edges[][3], int edgeCount) {
Graph* graph = new Graph(); //Tworzymy obiekt sieci
Graph* lGraph; //Wskażnik na obiekt sieci warstwowej
Graph* tmpGraph; //Wskażnik pomocniczy na obiekt sieci warstwowej
int layersCount; //Liczba warstw
bool stpath; //false - droga nie istnieje
int maxFlow = 0; //Na początku maksymalny przepływ jest równy zero
graph->addEdges(edges, edgeCount); //Dodajemy łuki do sieci
for (auto& it : graph->edges) {
it.second->setFlow(0); //Zerujemy przepływy na początku
}
lGraph = new Graph(); //Tworzymy obiekt sieci warstwowej
layer(graph, lGraph, layersCount, stpath); //Wydzielamy sieć warstwową
//Dopóki istnieje droga od s do t
while (stpath) {
saturate(lGraph, layersCount); //Nasycamy sieć warstwową
for (auto& it : graph->edges) {
if (it.second->getU() == SOURCE_N) {
maxFlow += it.second->getFlow(); //Kumulacja przepływu
}
}
tmpGraph = lGraph; //Zapisujemy adres sieci warstwowej do zmiennej pomocniczej
lGraph = new Graph(); //Tworzymy nowy obiekt sieci warstwowej
layer(tmpGraph, lGraph, layersCount, stpath); //Ponownie wydzielamy sieć warstwową
}
return maxFlow;
}
int main() {
//Przykłady sieci
//Maksymalny przepływ 4
int edges1[7][3] = {{SOURCE_N, 1, 2},
{SOURCE_N, 2, 3},
{1, 3, 5},
{1, 4, 6},
{2, 4, 3},
{3, SINK_N, 4},
{4, SINK_N, 2}
};
cout <<"Maximum flow of the first network is: " << getMaxFlow(edges1, 7) << endl;
//Maksymalny przepływ 20
int edges2[12][3] = {{SOURCE_N, 2, 50},
{1, SOURCE_N, 20},
{2, 1, 10},
{2, 4, 30},
{1, 3, 50},
{1, 4, 40},
{4, 1, 20},
{4, 3, 10},
{3, 5, 80},
{3, SINK_N, 40},
{5, SINK_N, 40},
{SINK_N, 4 , 20},
};
cout <<"Maximum flow of the second network is: " << getMaxFlow(edges2, 12) << endl;
//Maksymalny przepływ 30
int edges3[18][3] = { {SOURCE_N, 1, 7},
{SOURCE_N, 2, 20},
{SOURCE_N, 3, 16}, //1-c, 2-b, 3-a
{3, 4, 3},//3-a, 4-d
{3, 5, 15},//3-a, 5-e
{2, 4, 2}, //2-b, 4-d
{2, 5, 12}, //2-b, 5-e
{1, 4, 7}, //1-c, 4-d
{4, 6, 12}, //4-d, 6-f
{4, 7, 19}, //4-d, 7-g
{4, 8, 3}, //4-d, 8-h
{5, 6, 13}, //5-e, 6-f
{5, 8, 1}, //5-e, 8-h
{5, 9, 10}, //5-e, 9-k
{6, SINK_N, 9}, //6-f, 10-t
{7, SINK_N, 18}, //7-g, 10-t
{8, SINK_N, 8}, //8-h, 10-t
{9, SINK_N, 11}, //9-k, 10-t
};
cout <<"Maximum flow of the third network is: " << getMaxFlow(edges3, 18) << endl;
return 0;
}