forked from chromium/chromium
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnetwork_usage_accumulator_unittest.cc
348 lines (286 loc) · 11.4 KB
/
network_usage_accumulator_unittest.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "services/network/network_usage_accumulator.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace network {
namespace {
struct BytesTransferredKey {
uint32_t process_id;
uint32_t routing_id;
};
} // namespace
class NetworkUsageAccumulatorTest : public testing::Test {
public:
NetworkUsageAccumulatorTest() {}
~NetworkUsageAccumulatorTest() override {}
void SimulateRawBytesTransferred(const BytesTransferredKey& key,
int64_t bytes_received,
int64_t bytes_sent) {
network_usage_accumulator_.OnBytesTransferred(
key.process_id, key.routing_id, bytes_received, bytes_sent);
}
mojom::NetworkUsage* GetUsageForKey(
const std::vector<mojom::NetworkUsagePtr>& usages,
const BytesTransferredKey& key) {
for (const auto& usage : usages) {
if (key.process_id == usage->process_id &&
key.routing_id == usage->routing_id)
return usage.get();
}
return nullptr;
}
void ClearBytesTransferredForProcess(uint32_t process_id) {
network_usage_accumulator_.ClearBytesTransferredForProcess(process_id);
}
std::vector<mojom::NetworkUsagePtr> GetTotalNetworkUsages() const {
return network_usage_accumulator_.GetTotalNetworkUsages();
}
private:
NetworkUsageAccumulator network_usage_accumulator_;
DISALLOW_COPY_AND_ASSIGN(NetworkUsageAccumulatorTest);
};
// Tests that the |process_id| and |routing_id| are used in the map correctly.
TEST_F(NetworkUsageAccumulatorTest, ChildRouteData) {
BytesTransferredKey key = {100, 190};
int64_t correct_read_bytes = 0;
int64_t correct_sent_bytes = 0;
int read_bytes_array[] = {900, 300, 100};
int sent_bytes_array[] = {130, 153, 934};
for (int i : read_bytes_array) {
SimulateRawBytesTransferred(key, i, 0);
correct_read_bytes += i;
}
for (int i : sent_bytes_array) {
SimulateRawBytesTransferred(key, 0, i);
correct_sent_bytes += i;
}
auto returned_usages = GetTotalNetworkUsages();
EXPECT_EQ(1U, returned_usages.size());
EXPECT_EQ(correct_sent_bytes,
GetUsageForKey(returned_usages, key)->total_bytes_sent);
EXPECT_EQ(correct_read_bytes,
GetUsageForKey(returned_usages, key)->total_bytes_received);
}
// Tests that two distinct |process_id| and |routing_id| pairs are tracked
// separately in the unordered map.
TEST_F(NetworkUsageAccumulatorTest, TwoChildRouteData) {
BytesTransferredKey key1 = {32, 1};
BytesTransferredKey key2 = {17, 2};
int64_t correct_read_bytes1 = 0;
int64_t correct_sent_bytes1 = 0;
int64_t correct_read_bytes2 = 0;
int64_t correct_sent_bytes2 = 0;
int read_bytes_array1[] = {453, 987654, 946650};
int sent_bytes_array1[] = {138450, 1556473, 954434};
int read_bytes_array2[] = {905643, 324340, 654150};
int sent_bytes_array2[] = {1232138, 157312, 965464};
for (int i : read_bytes_array1) {
SimulateRawBytesTransferred(key1, i, 0);
correct_read_bytes1 += i;
}
for (int i : sent_bytes_array1) {
SimulateRawBytesTransferred(key1, 0, i);
correct_sent_bytes1 += i;
}
for (int i : read_bytes_array2) {
SimulateRawBytesTransferred(key2, i, 0);
correct_read_bytes2 += i;
}
for (int i : sent_bytes_array2) {
SimulateRawBytesTransferred(key2, 0, i);
correct_sent_bytes2 += i;
}
auto returned_usages = GetTotalNetworkUsages();
EXPECT_EQ(2U, returned_usages.size());
EXPECT_EQ(correct_sent_bytes1,
GetUsageForKey(returned_usages, key1)->total_bytes_sent);
EXPECT_EQ(correct_read_bytes1,
GetUsageForKey(returned_usages, key1)->total_bytes_received);
EXPECT_EQ(correct_sent_bytes2,
GetUsageForKey(returned_usages, key2)->total_bytes_sent);
EXPECT_EQ(correct_read_bytes2,
GetUsageForKey(returned_usages, key2)->total_bytes_received);
}
// Tests that two keys with the same |process_id| and |routing_id| are tracked
// together in the accumulator.
TEST_F(NetworkUsageAccumulatorTest, TwoSameChildRouteData) {
BytesTransferredKey key1 = {123, 456};
BytesTransferredKey key2 = {123, 456};
int64_t correct_read_bytes = 0;
int64_t correct_sent_bytes = 0;
int read_bytes_array[] = {90440, 12300, 103420};
int sent_bytes_array[] = {44130, 12353, 93234};
for (int i : read_bytes_array) {
SimulateRawBytesTransferred(key1, i, 0);
correct_read_bytes += i;
}
for (int i : sent_bytes_array) {
SimulateRawBytesTransferred(key1, 0, i);
correct_sent_bytes += i;
}
for (int i : read_bytes_array) {
SimulateRawBytesTransferred(key2, i, 0);
correct_read_bytes += i;
}
for (int i : sent_bytes_array) {
SimulateRawBytesTransferred(key2, 0, i);
correct_sent_bytes += i;
}
auto returned_usages = GetTotalNetworkUsages();
EXPECT_EQ(1U, returned_usages.size());
EXPECT_EQ(correct_sent_bytes,
GetUsageForKey(returned_usages, key1)->total_bytes_sent);
EXPECT_EQ(correct_read_bytes,
GetUsageForKey(returned_usages, key1)->total_bytes_received);
EXPECT_EQ(correct_sent_bytes,
GetUsageForKey(returned_usages, key2)->total_bytes_sent);
EXPECT_EQ(correct_read_bytes,
GetUsageForKey(returned_usages, key2)->total_bytes_received);
}
// Tests that the map can handle two process_ids with the same routing_id.
TEST_F(NetworkUsageAccumulatorTest, SameRouteDifferentProcesses) {
BytesTransferredKey key1 = {12, 143};
BytesTransferredKey key2 = {13, 143};
int64_t correct_read_bytes1 = 0;
int64_t correct_sent_bytes1 = 0;
int64_t correct_read_bytes2 = 0;
int64_t correct_sent_bytes2 = 0;
int read_bytes_array1[] = {453, 98754, 94650};
int sent_bytes_array1[] = {1350, 15643, 95434};
int read_bytes_array2[] = {905643, 3243, 654150};
int sent_bytes_array2[] = {12338, 157312, 9664};
for (int i : read_bytes_array1) {
SimulateRawBytesTransferred(key1, i, 0);
correct_read_bytes1 += i;
}
for (int i : sent_bytes_array1) {
SimulateRawBytesTransferred(key1, 0, i);
correct_sent_bytes1 += i;
}
for (int i : read_bytes_array2) {
SimulateRawBytesTransferred(key2, i, 0);
correct_read_bytes2 += i;
}
for (int i : sent_bytes_array2) {
SimulateRawBytesTransferred(key2, 0, i);
correct_sent_bytes2 += i;
}
auto returned_usages = GetTotalNetworkUsages();
EXPECT_EQ(2U, returned_usages.size());
EXPECT_EQ(correct_sent_bytes1,
GetUsageForKey(returned_usages, key1)->total_bytes_sent);
EXPECT_EQ(correct_read_bytes1,
GetUsageForKey(returned_usages, key1)->total_bytes_received);
EXPECT_EQ(correct_sent_bytes2,
GetUsageForKey(returned_usages, key2)->total_bytes_sent);
EXPECT_EQ(correct_read_bytes2,
GetUsageForKey(returned_usages, key2)->total_bytes_received);
}
// Tests that process data is cleared after termination.
TEST_F(NetworkUsageAccumulatorTest, ClearAfterTermination) {
// |key1| and |key2| belongs to the same process.
BytesTransferredKey key1 = {100, 190};
BytesTransferredKey key2 = {100, 191};
BytesTransferredKey key3 = {101, 191};
// No data has been transferred yet.
auto returned_usages = GetTotalNetworkUsages();
EXPECT_EQ(0U, returned_usages.size());
EXPECT_EQ(nullptr, GetUsageForKey(returned_usages, key1));
EXPECT_EQ(nullptr, GetUsageForKey(returned_usages, key2));
EXPECT_EQ(nullptr, GetUsageForKey(returned_usages, key3));
// Simulate data transfer on all three keys.
SimulateRawBytesTransferred(key1, 100, 1);
SimulateRawBytesTransferred(key2, 2, 200);
SimulateRawBytesTransferred(key3, 33, 333);
returned_usages = GetTotalNetworkUsages();
// Should have data observed on all three keys.
EXPECT_EQ(3U, returned_usages.size());
EXPECT_NE(nullptr, GetUsageForKey(returned_usages, key1));
EXPECT_NE(nullptr, GetUsageForKey(returned_usages, key2));
EXPECT_NE(nullptr, GetUsageForKey(returned_usages, key3));
// Simulate process termination on the first process.
ClearBytesTransferredForProcess(key1.process_id);
// |key1| and |key2| should both be cleared.
returned_usages = GetTotalNetworkUsages();
EXPECT_EQ(1U, returned_usages.size());
EXPECT_EQ(nullptr, GetUsageForKey(returned_usages, key1));
EXPECT_EQ(nullptr, GetUsageForKey(returned_usages, key2));
// |key3| shouldn't be affected.
EXPECT_NE(nullptr, GetUsageForKey(returned_usages, key3));
}
// Tests that the map can store both types of keys and that it does update after
// a process has gone.
TEST_F(NetworkUsageAccumulatorTest, MultipleWavesMixedData) {
BytesTransferredKey key1 = {12, 143};
BytesTransferredKey key2 = {0, 0};
int64_t correct_read_bytes1 = 0;
int64_t correct_sent_bytes1 = 0;
int read_bytes_array1[] = {453, 98754, 94650};
int sent_bytes_array1[] = {1350, 15643, 95434};
for (int i : read_bytes_array1) {
SimulateRawBytesTransferred(key1, i, 0);
correct_read_bytes1 += i;
}
for (int i : sent_bytes_array1) {
SimulateRawBytesTransferred(key1, 0, i);
correct_sent_bytes1 += i;
}
auto returned_usages = GetTotalNetworkUsages();
EXPECT_NE(nullptr, GetUsageForKey(returned_usages, key1));
// |key2| has not been used yet so it shouldn't exist in the returned usages.
EXPECT_EQ(nullptr, GetUsageForKey(returned_usages, key2));
SimulateRawBytesTransferred(key2, 0, 10);
returned_usages = GetTotalNetworkUsages();
EXPECT_NE(nullptr, GetUsageForKey(returned_usages, key2));
ClearBytesTransferredForProcess(key1.process_id);
ClearBytesTransferredForProcess(key2.process_id);
correct_sent_bytes1 = 0;
correct_read_bytes1 = 0;
SimulateRawBytesTransferred(key1, 0, 10);
correct_sent_bytes1 += 10;
returned_usages = GetTotalNetworkUsages();
EXPECT_EQ(1U, returned_usages.size());
EXPECT_EQ(correct_sent_bytes1,
GetUsageForKey(returned_usages, key1)->total_bytes_sent);
EXPECT_EQ(correct_read_bytes1,
GetUsageForKey(returned_usages, key1)->total_bytes_received);
// |key2| has been cleared.
EXPECT_EQ(nullptr, GetUsageForKey(returned_usages, key2));
ClearBytesTransferredForProcess(key1.process_id);
correct_read_bytes1 = 0;
correct_sent_bytes1 = 0;
int correct_read_bytes2 = 0;
int correct_sent_bytes2 = 0;
int read_bytes_array_second_1[] = {4153, 987154, 946501};
int sent_bytes_array_second_1[] = {13510, 115643, 954134};
int read_bytes_array2[] = {9056243, 32243, 6541250};
int sent_bytes_array2[] = {123238, 1527312, 96624};
for (int i : read_bytes_array_second_1) {
SimulateRawBytesTransferred(key1, i, 0);
correct_read_bytes1 += i;
}
for (int i : sent_bytes_array_second_1) {
SimulateRawBytesTransferred(key1, 0, i);
correct_sent_bytes1 += i;
}
for (int i : read_bytes_array2) {
SimulateRawBytesTransferred(key2, i, 0);
correct_read_bytes2 += i;
}
for (int i : sent_bytes_array2) {
SimulateRawBytesTransferred(key2, 0, i);
correct_sent_bytes2 += i;
}
returned_usages = GetTotalNetworkUsages();
EXPECT_EQ(2U, returned_usages.size());
EXPECT_EQ(correct_sent_bytes1,
GetUsageForKey(returned_usages, key1)->total_bytes_sent);
EXPECT_EQ(correct_read_bytes1,
GetUsageForKey(returned_usages, key1)->total_bytes_received);
EXPECT_EQ(correct_sent_bytes2,
GetUsageForKey(returned_usages, key2)->total_bytes_sent);
EXPECT_EQ(correct_read_bytes2,
GetUsageForKey(returned_usages, key2)->total_bytes_received);
}
} // namespace network