forked from X-PLUG/mPLUG-Owl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterface.py
68 lines (56 loc) · 2.83 KB
/
interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
from peft import LoraConfig, TaskType, get_peft_config, get_peft_model
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.tokenization_llama import LlamaTokenizer
from mplug_owl.configuration_mplug_owl import mPLUG_OwlConfig
from mplug_owl.modeling_mplug_owl import (ImageProcessor,
mPLUG_OwlForConditionalGeneration)
from mplug_owl.tokenize_utils import tokenize_prompts
def get_model(checkpoint_path=None, tokenizer_path=None, peft_config=None, device='cuda', dtype=torch.bfloat16):
config = mPLUG_OwlConfig()
model = mPLUG_OwlForConditionalGeneration(config=config)
model.eval()
if checkpoint_path is not None:
tmp_ckpt = torch.load(
checkpoint_path, map_location='cpu')
if peft_config is not None:
print('convert to LoRA model')
model = get_peft_model(model, peft_config=peft_config)
msg = model.load_state_dict(tmp_ckpt, strict=False)
print(msg)
assert tokenizer_path is not None
tokenizer = LlamaTokenizer(
tokenizer_path, pad_token='<unk>', add_bos_token=False)
tokenizer.eod_id = tokenizer.eos_token_id
img_processor = ImageProcessor()
model = model.to(dtype)
model = model.to(device)
return model, tokenizer, img_processor
def do_generate(prompts, image_list, model, tokenizer, img_processor, device='cuda', dtype=torch.bfloat16, **generate_kwargs):
tokens_to_generate = 0
add_BOS = True
context_tokens_tensor, context_length_tensorm, attention_mask = tokenize_prompts(
prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS, tokenizer=tokenizer, ignore_dist=True)
images = img_processor(image_list).to(dtype)
model.eval()
images = images.to(device)
context_tokens_tensor = context_tokens_tensor.to(device)
attention_mask = attention_mask.to(device)
with torch.no_grad():
res = model.generate(input_ids=context_tokens_tensor, pixel_values=images,
attention_mask=attention_mask, **generate_kwargs)
sentence = tokenizer.decode(res.tolist()[0], skip_special_tokens=True)
return sentence
if __name__ == '__main__':
from interface import get_model
model, tokenizer, img_processor = get_model(
checkpoint_path='checkpoint path', tokenizer_path='tokenizer path')
prompts = ['''The following is a conversation between a curious human and AI assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: <image>
Human: Explain why this meme is funny.
AI: ''']
image_list = ['xxx']
for i in range(5):
sentence = do_generate(prompts, image_list, model, tokenizer,
img_processor, max_length=512, top_k=5, do_sample=True)
print(sentence)