diff --git a/docs/zh/examples/heat_exchanger.md b/docs/zh/examples/heat_exchanger.md index d081a3de6..77530ee77 100644 --- a/docs/zh/examples/heat_exchanger.md +++ b/docs/zh/examples/heat_exchanger.md @@ -12,6 +12,18 @@ python heat_exchanger.py mode=eval EVAL.pretrained_model_path=https://paddle-org.bj.bcebos.com/paddlescience/models/HEDeepONet/HEDeepONet_pretrained.pdparams ``` +=== "模型导出命令" + + ``` sh + python heat_exchanger.py mode=export + ``` + +=== "模型推理命令" + + ``` sh + python heat_exchanger.py mode=infer + ``` + | 预训练模型 | 指标 | |:--| :--| | [heat_exchanger_pretrained.pdparams](https://paddle-org.bj.bcebos.com/paddlescience/models/HEDeepONet/HEDeepONet_pretrained.pdparams) | The L2 norm error between the actual heat exchanger efficiency and the predicted heat exchanger efficiency: 0.02087
MSE.heat_boundary(interior_mse): 0.52005
MSE.cold_boundary(interior_mse): 0.16590
MSE.wall(interior_mse): 0.01203 | diff --git a/examples/heat_exchanger/conf/heat_exchanger.yaml b/examples/heat_exchanger/conf/heat_exchanger.yaml index 25d1a0d90..eff796c5c 100644 --- a/examples/heat_exchanger/conf/heat_exchanger.yaml +++ b/examples/heat_exchanger/conf/heat_exchanger.yaml @@ -90,3 +90,22 @@ EVAL: qm_h: 1 qm_c: 1 eta_true: 0.5 + +# inference settings +INFER: + pretrained_model_path: https://paddle-org.bj.bcebos.com/paddlescience/models/HEDeepONet/HEDeepONet_pretrained.pdparams + export_path: ./inference/ldc2d_steady_Re10 + pdmodel_path: ${INFER.export_path}.pdmodel + pdiparams_path: ${INFER.export_path}.pdiparams + onnx_path: ${INFER.export_path}.onnx + device: gpu + engine: native + precision: fp32 + ir_optim: true + min_subgraph_size: 5 + gpu_mem: 2000 + gpu_id: 0 + max_batch_size: 1000 + num_cpu_threads: 10 + batch_size: 1000 + input_keys: ['qm_h','qm_c',"x",'t'] diff --git a/examples/heat_exchanger/heat_exchanger.py b/examples/heat_exchanger/heat_exchanger.py index d5a084060..2479aa4f3 100644 --- a/examples/heat_exchanger/heat_exchanger.py +++ b/examples/heat_exchanger/heat_exchanger.py @@ -373,65 +373,8 @@ def train(cfg: DictConfig): # visualize prediction after finished training visu_input["qm_c"] = np.full_like(visu_input["qm_c"], cfg.qm_h) visu_input["qm_h"] = np.full_like(visu_input["qm_c"], cfg.qm_c) - pred = solver.predict(visu_input) - x = visu_input["x"][: cfg.NPOINT] - # plot temperature of heat boundary - plt.figure() - y = np.full_like(pred["T_h"][: cfg.NPOINT].numpy(), cfg.T_hin) - plt.plot(x, y, label="t = 0.0 s") - for i in range(10): - y = pred["T_h"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)].numpy() - plt.plot(x, y, label=f"t = {(i+1)*0.1:,.1f} s") - plt.xlabel("A") - plt.ylabel(r"$T_h$") - plt.legend() - plt.grid() - plt.savefig("T_h.png") - # plot temperature of cold boundary - plt.figure() - y = np.full_like(pred["T_c"][: cfg.NPOINT].numpy(), cfg.T_cin) - plt.plot(x, y, label="t = 0.0 s") - for i in range(10): - y = pred["T_c"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)].numpy() - plt.plot(x, y, label=f"t = {(i+1)*0.1:,.1f} s") - plt.xlabel("A") - plt.ylabel(r"$T_c$") - plt.legend() - plt.grid() - plt.savefig("T_c.png") - # plot temperature of wall - plt.figure() - y = np.full_like(pred["T_w"][: cfg.NPOINT].numpy(), cfg.T_win) - plt.plot(x, y, label="t = 0.0 s") - for i in range(10): - y = pred["T_w"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)].numpy() - plt.plot(x, y, label=f"t = {(i+1)*0.1:,.1f} s") - plt.xlabel("A") - plt.ylabel(r"$T_w$") - plt.legend() - plt.grid() - plt.savefig("T_w.png") - # plot the heat exchanger efficiency as a function of time. - plt.figure() - qm_min = np.min((visu_input["qm_h"][0], visu_input["qm_c"][0])) - eta = ( - visu_input["qm_h"][0] - * (pred["T_h"][:: cfg.NPOINT] - pred["T_h"][cfg.NPOINT - 1 :: cfg.NPOINT]) - / ( - qm_min - * (pred["T_h"][:: cfg.NPOINT] - pred["T_c"][cfg.NPOINT - 1 :: cfg.NPOINT]) - ) - ).numpy() - x = list(range(1, cfg.NTIME + 1)) - plt.plot(x, eta) - plt.xlabel("time") - plt.ylabel(r"$\eta$") - plt.grid() - plt.savefig("eta.png") - error = np.square(eta[-1] - cfg.eta_true) - logger.info( - f"The L2 norm error between the actual heat exchanger efficiency and the predicted heat exchanger efficiency is {error}" - ) + pred = solver.predict(visu_input, return_numpy=True) + plot(visu_input, pred, cfg) def evaluate(cfg: DictConfig): @@ -593,14 +536,69 @@ def evaluate(cfg: DictConfig): # visualize prediction after finished training visu_input["qm_c"] = np.full_like(visu_input["qm_c"], cfg.qm_h) visu_input["qm_h"] = np.full_like(visu_input["qm_c"], cfg.qm_c) - pred = solver.predict(visu_input) + pred = solver.predict(visu_input, return_numpy=True) + plot(visu_input, pred, cfg) + + +def export(cfg: DictConfig): + # set model + model = ppsci.arch.HEDeepONets(**cfg.MODEL) + + # initialize solver + solver = ppsci.solver.Solver( + model, + pretrained_model_path=cfg.INFER.pretrained_model_path, + ) + # export model + from paddle.static import InputSpec + + input_spec = [ + {key: InputSpec([None, 1], "float32", name=key) for key in model.input_keys}, + ] + solver.export(input_spec, cfg.INFER.export_path) + + +def inference(cfg: DictConfig): + from deploy.python_infer import pinn_predictor + + predictor = pinn_predictor.PINNPredictor(cfg) + + # set time-geometry + timestamps = np.linspace(0.0, 2, cfg.NTIME + 1, endpoint=True) + geom = { + "time_rect": ppsci.geometry.TimeXGeometry( + ppsci.geometry.TimeDomain(0.0, 1, timestamps=timestamps), + ppsci.geometry.Interval(0, cfg.DL), + ) + } + input_dict = geom["time_rect"].sample_interior(cfg.NPOINT * cfg.NTIME, evenly=True) + test_h = np.random.rand(1).reshape([-1, 1]).astype("float32") + test_c = np.random.rand(1).reshape([-1, 1]).astype("float32") + # rearrange train data and eval data + input_dict["qm_h"] = np.tile(test_h, (cfg.NPOINT * cfg.NTIME, 1)) + input_dict["qm_c"] = np.tile(test_c, (cfg.NPOINT * cfg.NTIME, 1)) + input_dict["qm_c"] = np.full_like(input_dict["qm_c"], cfg.qm_h) + input_dict["qm_h"] = np.full_like(input_dict["qm_c"], cfg.qm_c) + output_dict = predictor.predict( + {key: input_dict[key] for key in cfg.INFER.input_keys}, cfg.INFER.batch_size + ) + + # mapping data to cfg.INFER.output_keys + output_dict = { + store_key: output_dict[infer_key] + for store_key, infer_key in zip(cfg.MODEL.output_keys, output_dict.keys()) + } + plot(input_dict, output_dict, cfg) + + +def plot(visu_input, pred, cfg: DictConfig): x = visu_input["x"][: cfg.NPOINT] # plot temperature of heat boundary plt.figure() - y = np.full_like(pred["T_h"][: cfg.NPOINT].numpy(), cfg.T_hin) + y = np.full_like(pred["T_h"][: cfg.NPOINT], cfg.T_hin) plt.plot(x, y, label="t = 0.0 s") for i in range(10): - y = pred["T_h"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)].numpy() + y = pred["T_h"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)] plt.plot(x, y, label=f"t = {(i+1)*0.1:,.1f} s") plt.xlabel("A") plt.ylabel(r"$T_h$") @@ -609,10 +607,10 @@ def evaluate(cfg: DictConfig): plt.savefig("T_h.png") # plot temperature of cold boundary plt.figure() - y = np.full_like(pred["T_c"][: cfg.NPOINT].numpy(), cfg.T_cin) + y = np.full_like(pred["T_c"][: cfg.NPOINT], cfg.T_cin) plt.plot(x, y, label="t = 0.0 s") for i in range(10): - y = pred["T_c"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)].numpy() + y = pred["T_c"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)] plt.plot(x, y, label=f"t = {(i+1)*0.1:,.1f} s") plt.xlabel("A") plt.ylabel(r"$T_c$") @@ -621,10 +619,10 @@ def evaluate(cfg: DictConfig): plt.savefig("T_c.png") # plot temperature of wall plt.figure() - y = np.full_like(pred["T_w"][: cfg.NPOINT].numpy(), cfg.T_win) + y = np.full_like(pred["T_w"][: cfg.NPOINT], cfg.T_win) plt.plot(x, y, label="t = 0.0 s") for i in range(10): - y = pred["T_w"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)].numpy() + y = pred["T_w"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)] plt.plot(x, y, label=f"t = {(i+1)*0.1:,.1f} s") plt.xlabel("A") plt.ylabel(r"$T_w$") @@ -641,7 +639,7 @@ def evaluate(cfg: DictConfig): qm_min * (pred["T_h"][:: cfg.NPOINT] - pred["T_c"][cfg.NPOINT - 1 :: cfg.NPOINT]) ) - ).numpy() + ) x = list(range(1, cfg.NTIME + 1)) plt.plot(x, eta) plt.xlabel("time") @@ -660,8 +658,14 @@ def main(cfg: DictConfig): train(cfg) elif cfg.mode == "eval": evaluate(cfg) + elif cfg.mode == "export": + export(cfg) + elif cfg.mode == "infer": + inference(cfg) else: - raise ValueError(f"cfg.mode should in ['train', 'eval'], but got '{cfg.mode}'") + raise ValueError( + f"cfg.mode should in ['train', 'eval', 'export', 'infer'], but got '{cfg.mode}'" + ) if __name__ == "__main__":