diff --git a/docs/zh/examples/heat_exchanger.md b/docs/zh/examples/heat_exchanger.md
index d081a3de6..77530ee77 100644
--- a/docs/zh/examples/heat_exchanger.md
+++ b/docs/zh/examples/heat_exchanger.md
@@ -12,6 +12,18 @@
python heat_exchanger.py mode=eval EVAL.pretrained_model_path=https://paddle-org.bj.bcebos.com/paddlescience/models/HEDeepONet/HEDeepONet_pretrained.pdparams
```
+=== "模型导出命令"
+
+ ``` sh
+ python heat_exchanger.py mode=export
+ ```
+
+=== "模型推理命令"
+
+ ``` sh
+ python heat_exchanger.py mode=infer
+ ```
+
| 预训练模型 | 指标 |
|:--| :--|
| [heat_exchanger_pretrained.pdparams](https://paddle-org.bj.bcebos.com/paddlescience/models/HEDeepONet/HEDeepONet_pretrained.pdparams) | The L2 norm error between the actual heat exchanger efficiency and the predicted heat exchanger efficiency: 0.02087
MSE.heat_boundary(interior_mse): 0.52005
MSE.cold_boundary(interior_mse): 0.16590
MSE.wall(interior_mse): 0.01203 |
diff --git a/examples/heat_exchanger/conf/heat_exchanger.yaml b/examples/heat_exchanger/conf/heat_exchanger.yaml
index 25d1a0d90..eff796c5c 100644
--- a/examples/heat_exchanger/conf/heat_exchanger.yaml
+++ b/examples/heat_exchanger/conf/heat_exchanger.yaml
@@ -90,3 +90,22 @@ EVAL:
qm_h: 1
qm_c: 1
eta_true: 0.5
+
+# inference settings
+INFER:
+ pretrained_model_path: https://paddle-org.bj.bcebos.com/paddlescience/models/HEDeepONet/HEDeepONet_pretrained.pdparams
+ export_path: ./inference/ldc2d_steady_Re10
+ pdmodel_path: ${INFER.export_path}.pdmodel
+ pdiparams_path: ${INFER.export_path}.pdiparams
+ onnx_path: ${INFER.export_path}.onnx
+ device: gpu
+ engine: native
+ precision: fp32
+ ir_optim: true
+ min_subgraph_size: 5
+ gpu_mem: 2000
+ gpu_id: 0
+ max_batch_size: 1000
+ num_cpu_threads: 10
+ batch_size: 1000
+ input_keys: ['qm_h','qm_c',"x",'t']
diff --git a/examples/heat_exchanger/heat_exchanger.py b/examples/heat_exchanger/heat_exchanger.py
index d5a084060..2479aa4f3 100644
--- a/examples/heat_exchanger/heat_exchanger.py
+++ b/examples/heat_exchanger/heat_exchanger.py
@@ -373,65 +373,8 @@ def train(cfg: DictConfig):
# visualize prediction after finished training
visu_input["qm_c"] = np.full_like(visu_input["qm_c"], cfg.qm_h)
visu_input["qm_h"] = np.full_like(visu_input["qm_c"], cfg.qm_c)
- pred = solver.predict(visu_input)
- x = visu_input["x"][: cfg.NPOINT]
- # plot temperature of heat boundary
- plt.figure()
- y = np.full_like(pred["T_h"][: cfg.NPOINT].numpy(), cfg.T_hin)
- plt.plot(x, y, label="t = 0.0 s")
- for i in range(10):
- y = pred["T_h"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)].numpy()
- plt.plot(x, y, label=f"t = {(i+1)*0.1:,.1f} s")
- plt.xlabel("A")
- plt.ylabel(r"$T_h$")
- plt.legend()
- plt.grid()
- plt.savefig("T_h.png")
- # plot temperature of cold boundary
- plt.figure()
- y = np.full_like(pred["T_c"][: cfg.NPOINT].numpy(), cfg.T_cin)
- plt.plot(x, y, label="t = 0.0 s")
- for i in range(10):
- y = pred["T_c"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)].numpy()
- plt.plot(x, y, label=f"t = {(i+1)*0.1:,.1f} s")
- plt.xlabel("A")
- plt.ylabel(r"$T_c$")
- plt.legend()
- plt.grid()
- plt.savefig("T_c.png")
- # plot temperature of wall
- plt.figure()
- y = np.full_like(pred["T_w"][: cfg.NPOINT].numpy(), cfg.T_win)
- plt.plot(x, y, label="t = 0.0 s")
- for i in range(10):
- y = pred["T_w"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)].numpy()
- plt.plot(x, y, label=f"t = {(i+1)*0.1:,.1f} s")
- plt.xlabel("A")
- plt.ylabel(r"$T_w$")
- plt.legend()
- plt.grid()
- plt.savefig("T_w.png")
- # plot the heat exchanger efficiency as a function of time.
- plt.figure()
- qm_min = np.min((visu_input["qm_h"][0], visu_input["qm_c"][0]))
- eta = (
- visu_input["qm_h"][0]
- * (pred["T_h"][:: cfg.NPOINT] - pred["T_h"][cfg.NPOINT - 1 :: cfg.NPOINT])
- / (
- qm_min
- * (pred["T_h"][:: cfg.NPOINT] - pred["T_c"][cfg.NPOINT - 1 :: cfg.NPOINT])
- )
- ).numpy()
- x = list(range(1, cfg.NTIME + 1))
- plt.plot(x, eta)
- plt.xlabel("time")
- plt.ylabel(r"$\eta$")
- plt.grid()
- plt.savefig("eta.png")
- error = np.square(eta[-1] - cfg.eta_true)
- logger.info(
- f"The L2 norm error between the actual heat exchanger efficiency and the predicted heat exchanger efficiency is {error}"
- )
+ pred = solver.predict(visu_input, return_numpy=True)
+ plot(visu_input, pred, cfg)
def evaluate(cfg: DictConfig):
@@ -593,14 +536,69 @@ def evaluate(cfg: DictConfig):
# visualize prediction after finished training
visu_input["qm_c"] = np.full_like(visu_input["qm_c"], cfg.qm_h)
visu_input["qm_h"] = np.full_like(visu_input["qm_c"], cfg.qm_c)
- pred = solver.predict(visu_input)
+ pred = solver.predict(visu_input, return_numpy=True)
+ plot(visu_input, pred, cfg)
+
+
+def export(cfg: DictConfig):
+ # set model
+ model = ppsci.arch.HEDeepONets(**cfg.MODEL)
+
+ # initialize solver
+ solver = ppsci.solver.Solver(
+ model,
+ pretrained_model_path=cfg.INFER.pretrained_model_path,
+ )
+ # export model
+ from paddle.static import InputSpec
+
+ input_spec = [
+ {key: InputSpec([None, 1], "float32", name=key) for key in model.input_keys},
+ ]
+ solver.export(input_spec, cfg.INFER.export_path)
+
+
+def inference(cfg: DictConfig):
+ from deploy.python_infer import pinn_predictor
+
+ predictor = pinn_predictor.PINNPredictor(cfg)
+
+ # set time-geometry
+ timestamps = np.linspace(0.0, 2, cfg.NTIME + 1, endpoint=True)
+ geom = {
+ "time_rect": ppsci.geometry.TimeXGeometry(
+ ppsci.geometry.TimeDomain(0.0, 1, timestamps=timestamps),
+ ppsci.geometry.Interval(0, cfg.DL),
+ )
+ }
+ input_dict = geom["time_rect"].sample_interior(cfg.NPOINT * cfg.NTIME, evenly=True)
+ test_h = np.random.rand(1).reshape([-1, 1]).astype("float32")
+ test_c = np.random.rand(1).reshape([-1, 1]).astype("float32")
+ # rearrange train data and eval data
+ input_dict["qm_h"] = np.tile(test_h, (cfg.NPOINT * cfg.NTIME, 1))
+ input_dict["qm_c"] = np.tile(test_c, (cfg.NPOINT * cfg.NTIME, 1))
+ input_dict["qm_c"] = np.full_like(input_dict["qm_c"], cfg.qm_h)
+ input_dict["qm_h"] = np.full_like(input_dict["qm_c"], cfg.qm_c)
+ output_dict = predictor.predict(
+ {key: input_dict[key] for key in cfg.INFER.input_keys}, cfg.INFER.batch_size
+ )
+
+ # mapping data to cfg.INFER.output_keys
+ output_dict = {
+ store_key: output_dict[infer_key]
+ for store_key, infer_key in zip(cfg.MODEL.output_keys, output_dict.keys())
+ }
+ plot(input_dict, output_dict, cfg)
+
+
+def plot(visu_input, pred, cfg: DictConfig):
x = visu_input["x"][: cfg.NPOINT]
# plot temperature of heat boundary
plt.figure()
- y = np.full_like(pred["T_h"][: cfg.NPOINT].numpy(), cfg.T_hin)
+ y = np.full_like(pred["T_h"][: cfg.NPOINT], cfg.T_hin)
plt.plot(x, y, label="t = 0.0 s")
for i in range(10):
- y = pred["T_h"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)].numpy()
+ y = pred["T_h"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)]
plt.plot(x, y, label=f"t = {(i+1)*0.1:,.1f} s")
plt.xlabel("A")
plt.ylabel(r"$T_h$")
@@ -609,10 +607,10 @@ def evaluate(cfg: DictConfig):
plt.savefig("T_h.png")
# plot temperature of cold boundary
plt.figure()
- y = np.full_like(pred["T_c"][: cfg.NPOINT].numpy(), cfg.T_cin)
+ y = np.full_like(pred["T_c"][: cfg.NPOINT], cfg.T_cin)
plt.plot(x, y, label="t = 0.0 s")
for i in range(10):
- y = pred["T_c"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)].numpy()
+ y = pred["T_c"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)]
plt.plot(x, y, label=f"t = {(i+1)*0.1:,.1f} s")
plt.xlabel("A")
plt.ylabel(r"$T_c$")
@@ -621,10 +619,10 @@ def evaluate(cfg: DictConfig):
plt.savefig("T_c.png")
# plot temperature of wall
plt.figure()
- y = np.full_like(pred["T_w"][: cfg.NPOINT].numpy(), cfg.T_win)
+ y = np.full_like(pred["T_w"][: cfg.NPOINT], cfg.T_win)
plt.plot(x, y, label="t = 0.0 s")
for i in range(10):
- y = pred["T_w"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)].numpy()
+ y = pred["T_w"][cfg.NPOINT * i * 2 : cfg.NPOINT * (i * 2 + 1)]
plt.plot(x, y, label=f"t = {(i+1)*0.1:,.1f} s")
plt.xlabel("A")
plt.ylabel(r"$T_w$")
@@ -641,7 +639,7 @@ def evaluate(cfg: DictConfig):
qm_min
* (pred["T_h"][:: cfg.NPOINT] - pred["T_c"][cfg.NPOINT - 1 :: cfg.NPOINT])
)
- ).numpy()
+ )
x = list(range(1, cfg.NTIME + 1))
plt.plot(x, eta)
plt.xlabel("time")
@@ -660,8 +658,14 @@ def main(cfg: DictConfig):
train(cfg)
elif cfg.mode == "eval":
evaluate(cfg)
+ elif cfg.mode == "export":
+ export(cfg)
+ elif cfg.mode == "infer":
+ inference(cfg)
else:
- raise ValueError(f"cfg.mode should in ['train', 'eval'], but got '{cfg.mode}'")
+ raise ValueError(
+ f"cfg.mode should in ['train', 'eval', 'export', 'infer'], but got '{cfg.mode}'"
+ )
if __name__ == "__main__":