-
Notifications
You must be signed in to change notification settings - Fork 1
/
Seminar 7-Static and Dynamic games with Complete Information.tex
852 lines (591 loc) · 32.3 KB
/
Seminar 7-Static and Dynamic games with Complete Information.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\setlength{\parindent}{0pt}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=magenta,
urlcolor=cyan}
\usepackage{graphicx}
\graphicspath{ {./pic/} }
\usepackage{multicol}
\usepackage{lscape}
\usepackage{fourier,amssymb,microtype,amsmath,gensymb}
\newcommand{\R}{\mathbb{R}}
\usepackage{mdframed,caption,xcolor}
\usepackage{tikz,tkz-euclide}
\usepackage{multirow}
\title{Seminar 7. Static and Dynamic games with Complete Information}
\author{Xiaoguang Ling \\ \href{xiaoguang.ling@econ.uio.no}{xiaoguang.ling@econ.uio.no}}
\date{\today}
\begin{document}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
We choose static game with complete information as our benchmark
because it's the simplest game. More complex games need stricter conditions to locate the equilibria, i.e. refinement (rule out unrealistic NE).
\begin{itemize}
\item \textbf{Be sure to know which type the game is before answering
any question!}
\end{itemize}
\section*{Complete Information}
Players have symmetric information (no private information) and
know clearly which "type" their opponents are.
\subsection*{\hspace{4mm} Static (Watson Part II)}
\hspace{4mm} Players act simultaneously and independently.
\begin{itemize}
\item Belief, Pure/Mixed strategy
\item Rationality, Dominance \& Nash Equilibrium (NE)
\end{itemize}
\subsection*{\hspace{4mm} Dynamic (Watson Part III)}
\hspace{4mm} One move after another.
\begin{itemize}
\item Empty threat: not every NE are realistic, refinement needed.
\item Subgame Perfect Nash Equilibrium (SPNE)
\item Imperfect innformation: examine every subgame by hand (Watson pp. 190)
\item Perfect information: backward-induction method
\item Repeated game \& trigger strategy
\end{itemize}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Incomplete Information (Watson Part IV)}
At least one player does not know which type his/her opponents are.
\begin{itemize}
\item Exogenous move: nature decides player's type.
\item Players without private information can only "guess" (assign probability/belief to) the type of his/her opponent.
\end{itemize}
\subsection*{\hspace{4mm} Static (Watson pp.327 - 377)}
\begin{itemize}
\item Bayesian Nash Equilibrium (BNE)
\item Bayesian normal form
\end{itemize}
\subsection*{\hspace{4mm} Dynamic(Watson pp.378 - 406)}
\hspace{4mm} More information can be obtained from the opponent's behavior.
\hspace{4mm} $\Rightarrow$ Probability (belief) can be adjusted dynamically (updated).
\begin{itemize}
\item Perfect Bayesian (Nash) Equilibrium (PBNE)
\item Screening: player \textbf{without} private information move first (e.g. Insurance scheme to screen risky clients; Contract to rule out low-capacity workers).
\item Signaling: player \textbf{with} private information move first (High-risk clients pretend to be of low-risk).
\item Pooling \& Separating equilibrium.
\end{itemize}
\end{mdframed}
\begin{mdframed}[backgroundcolor=yellow!20,linecolor=white]
Many students treated a dynamic game as static last year...
Narrative like "player 2 acts before/after player 1" is definitely dynamic. You must refine the NE properly!
\begin{itemize}
\item Correctly drawn extensive form for complex dynamic games may gain some points :)
\item Do more exercises on screening and signaling games until you can solve it by yourself. It may take 20 points in exam.
\end{itemize}
\end{mdframed}
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Problem 1 - Simultaneous and sequential moves with complete information (static and dynamic pizza game)}
You and a friend are in a restaurant, and the owner offers both of you an 8-slice pizza under
the following condition. Each of you must \textbf{simultaneously} announce how many slices you would
like; that is, each player $i \in \{1, 2\}$ names his/her desired amount of pizza, $0 \leq s_i
\leq 8$.
\begin{itemize}
\item If $s_1 + s_2 \leq 8$, then the players get their demands (and the owner eats any leftover slices).
\item If $s_1 + s_2 > 8$, then the players get nothing.
\end{itemize}
Assume that you each care
only about how much pizza you individually consume, preferring more pizza to less.
%***************************************************
\subsection{What is (are) each player's best response(s) for each of the possible demands for his/her
opponent?}
\label{subsec:br}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\textbf{Best Response} (Watson pp.54)
Suppose player $i$ has a belief $\theta_{-i} \in \Delta S_{-i}$ about the strategies played
by the other players. Player $i$'s strategy $s_i \in S_i$ is a best response if
$u_i (s_i , \theta_{-i} ) \ge u_i (s'_i , \theta_{-i})$ for every $s'_i \in S_i$
\vspace{4mm}
Terms and notations(Watson pp.37):
\begin{itemize}
\item Belief: a player's assessment about the strategies of the others,i.e. probability distributions such as $(1/2,1/6,2/6)$ for 3 strategies $U,M,D$ of the opponent.
\item $\Delta S_{-i}$: the set of probability distributions over the strategies of all the players except player $i$ .
\end{itemize}
In one word, the strategies bringing the highest payoff given the belief of the player.
\vspace{4mm}
The question wants you to find each palyer's BR for \textbf{each of the possible demands} for his/her opponent. We only think about the belief that the opponent chooses a certain piece with probability $=1$ instead of any belief $\in (0,1)$, i.e. don't think about mixed strategies here.
\newpage
Let's look for BR together in the normal form:
\captionof{table}{Normal form for the pizza game}
\label{tab:pizza}
\begin{tabular}{cc|c|c|c|c|c|c|c|c|c|}
& \multicolumn{3}{c}{} & \multicolumn{4}{c}{P$2$} & \multicolumn{3}{c}{} \\
& \multicolumn{1}{c}{} & \multicolumn{1}{c}{$0$} & \multicolumn{1}{c}{$1$} & \multicolumn{1}{c}{$2$}
& \multicolumn{1}{c}{$3$} & \multicolumn{1}{c}{$4$} & \multicolumn{1}{c}{$5$} & \multicolumn{1}{c}{$6$}
& \multicolumn{1}{c}{$7$} & \multicolumn{1}{c}{$8$} \\\cline{3-11}
& $0$ & $(0,0)$ & $(0,1)$ & $(0,2)$ & $(0,3)$ & $(0,4)$ & $(0,5)$ & $(0,6)$ & $(0,7)$ & $(0,8)$ \\ \cline{3-11}
& $1$ & $(1,0)$ & $(1,1)$ & $(1,2)$ & $(1,3)$ & $(1,4)$ & $(1,5)$ & $(1,6)$ & $(1,7)$ & $(0,0)$ \\ \cline{3-11}
& $2$ & $(2,0)$ & $(2,1)$ & $(2,2)$ & $(2,3)$ & $(2,4)$ & $(2,5)$ & $(2,6)$ & $(0,0)$ & $(0,0)$\\\cline{3-11}
& $3$ & $(3,0)$ & $(3,1)$ & $(3,2)$ & $(3,3)$ & $(3,4)$ & $(3,5)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ \\\cline{3-11}
P$1$ & $4$ & $(4,0)$ & $(4,1)$ & $(4,2)$ & $(4,3)$ & $(4,4)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ \\\cline{3-11}
& $5$ & $(5,0)$ & $(5,1)$ & $(5,2)$ & $(5,3)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ \\\cline{3-11}
& $6$ & $(6,0)$ & $(6,1)$ & $(6,2)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ \\\cline{3-11}
& $7$ & $(7,0)$ & $(7,1)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ \\\cline{3-11}
& $8$ & $(8,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ & $(0,0)$ \\\cline{3-11}
\end{tabular}
\end{mdframed}
BR set if opponent chooses $0$: $\{8\}$ \\
BR set if opponent chooses $1$: $\{7\}$ \\
BR set if opponent chooses $2$: $\{6\}$ \\
BR set if opponent chooses $3$: $\{5\}$ \\
BR set if opponent chooses $4$: $\{4\}$ \\
BR set if opponent chooses $5$: $\{3\}$ \\
BR set if opponent chooses $6$: $\{2\}$ \\
BR set if opponent chooses $7$: $\{1\}$ \\
BR set if opponent chooses $8$: $\{0,1,2,3,4,5,6,7,8\}$
\vspace{4mm}
You can also write:
\vspace{4mm}
BR set if opponent chooses $n$, $n \in [0,7]$ : $\{8-n\}$ \\
BR set if opponent chooses $8$: $\{0,1,2,3,4,5,6,7,8\}$ \\
%
%***************************************************
\subsection{Find all the pure-strategy Nash equilibria}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
A strategy profile $s \in S$ is a Nash equilibrium if and only if $s_i \in BR_i(s_{-i})$
for each player $i$. That is, $u_i (s_i , s_{-i}) \ge u_i (s'_i , s_{-i})$ for every $s'_i \in S_i$
and each player $i$.
\vspace{4mm}
In one word, in a NE, the \text{strategy is}(note: strategy is a plan that can contain many contingent choices, see also question \ref{subsec:stragey}) the BRs for every player.
\begin{itemize}
\item We can find NE based on the BR we found in question \ref{subsec:br}.
\item Don't forget $(8,8)$. Intuition: no incentive to deviate from the state (initial strategy).
\end{itemize}
\end{mdframed}
NE: $(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0),(8,8)$
%
\begin{mdframed}[backgroundcolor=yellow!20,linecolor=white]
Be careful, unless the question asks you to find "pure-strategy NE", always take mixed-strategy into consideration! So called pure strategy is only a special case of belief assginment, i.e. it is a mixed strategy with probability being 1 for a certain choice.
\end{mdframed}
\large{Reconsider the situation above, but assume now that \textbf{player 1 makes her demand before
player 2} makes his demand. Player 2 observes player 1's demand before making his choice.}
%
%
%***************************************************
\subsection{Explain what a strategy is for player 2 in this game with sequential moves.}
\label{subsec:stragey}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\textbf{Strategy:} A strategy is a complete contingent plan for a player in the game.
It describes what the player will do at each of his/her information sets (Watson pp.22).
\vspace{2mm}
Think about an easier question:
\begin{center}
{\includegraphics[width=0.8\textwidth]{7.f2_7}
\label{fig:f2_7}}
\vspace{2mm}
\end{center}
Let $s_i$ denotes a single strategy of player $i$,
There are 2 strategies for player 1: $s_1 =H$ and $s_1=L$.
There are 4 strategies for player 2 : $s_2 =HH'$, $s_2 =HL'$, $s_2 =LH'$, and $s_2 =LL'$.
\begin{itemize}
\item $H$ and $H'$ are the same choice for player 2, but under 2 different conditions (how player 1 moves).
\item $HH'$ means "when player 1 chooses $H$, player 2 chooses $H$; when player 1 chooses $L$, player 2 also chooses $H$".
\item We use $H'$ instead of $H$ just to distinguish the two conditions.
\end{itemize}
Player 2's strategy has a form of ``$s_2 = [s_2(s_1 = H),s_2(s_1 = L)]$'', where $s_2(s_1 = H)$ can be either $H$ or $L$, and $s_2(s_1 = L)$ can be either $H'$ or $L'$. There are $2 \times 2 = 4$ different strategies.
\vspace{3mm}
Now think, in the pizza problem:
\end{mdframed}
Both player 1 and player 2 have 9 different choices, and player 1 moves first.
Player 2's strategy is:
$[s_2(s_1 = 0), s_2(s_1 = 1), s_2(s_1 = 2), s_2(s_1 = 3), s_2(s_1 = 4), s_2(s_1 = 5),
\\ s_2(s_1 = 6), s_2(s_1 = 7), s_2(s_1 = 8)]$
where each $s_2(s_1 = n)$ can take 9 values in $[0,8]$ ($9^9$ strategies in total).
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
This seems redundant but it's necessary to represent all the information, which is critical for an equilibrium. See question \ref{subsec:ne}.
\medskip
Here is another example to show the problem more clearly.
\begin{center}
{\includegraphics[width=0.8\textwidth]{7.f15_4}
\label{fig:f15_4}}
\vspace{2mm}
\end{center}
\textbf{Strategy Set/Space} (Watson pp.23)
We use $S_i$ to denote the strategy set/space for player $i$ (a set comprising each of the possible strategies of player $i$ in the game).
\medskip
In the original game, player 1 has 4 single strategies. The strategy space $S_1 = \{UA,UB,DA,DB\}$; while player 2 only has 2 strategies, $S_2 = \{X,Y\}$.
\begin{itemize}
\item The number of strategies depends on how many decisions (information set) player i has to make.
\item Nodes linked by a dashed line is ONE information set (player 2 can't know if player 1 chooses A or B, therefore he/she can make one decision, $X$ or $Y$.)
\end{itemize}
\end{mdframed}
%
%***************************************************
\subsection{Find all the pure-strategy Nash equilibrium outcomes. }
\label{subsec:ne}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\textbf{Subquesiton \ref{subsec:ne} and Subquesiton \ref{subsec:spne} are to help you
understand why we need to refine NE to SPNE for a dynamic game.}
\medskip
A NE is a state in which nobody can improve his/her payoff by deviating from his/her own strategy unilaterally.
\smallskip
To ahcieve a NE, player 2 must have his/her best response against $s_1$, and also make sure player 1 will not regret choosing $s_1$ (then deviate).
\medskip
Actually, we already found all the static NE for in Table \ref{tab:pizza}, what we need to do is to "rewrite" them in a dynamic way s.t. no one will deviate.
\smallskip
Take a NE $(2,6)$ in Table \ref{tab:pizza} for example.
\begin{itemize}
\item When player 1 chooses 2 first, the best response for player 2 is to choose 6;
\item To make sure player 1 will not deviate from choosing 2, player 1 must "eliminate" player 1's incentive to deviate, i.e. let $u_1(s_1=2,s_2) \ge u_1(s_1 \ne 2,s_2)$.
\item A strategy $s_2$ such as $(4,8,\textcolor{red}{6},6,5,4,3,2,1)$ achieves such a NE.
\item Note the red \textcolor{red}{6} is the outcome (payoff) but not a "strategy". A strategy is a complete contingent plan. Here includes both the result player 2 wants (\textcolor{red}{6}) and the threat part ("if you choose less than 2, fine; if you choose more than 2, I'll let you have nothing").
\end{itemize}
We find $(2,(4,8,\textcolor{red}{6},6,5,4,3,2,1))$ is a dynamic NE.
\medskip
For all the NE (except $(8,8)$) found in Table \ref{tab:pizza}, we can express them as:
\smallskip
$$s^\ast_1 \in \{0,1,2,3,4,5,6,7,8\} \ \ \ and$$
$$s^\ast_2(s_1) = 8 - s_1 \ \ if \ \ s_1 = s^\ast_1$$
$$s^\ast_2(s_1) > 8 - s_1 \ \ if \ \ s_1 > s^\ast_1$$
$$s^\ast_2(s_1) \in \{0,1,2,3,4,5,6,7,8\}\ \ if \ \ s_1 < s^\ast_1$$
The static NE $(8,8)$ is a little different to rewrite, but the idea is the same.
\begin{itemize}
\item When player 1 chooses 8 first, any natural number in $[0,8]$ is a best response of player 2. Thus 8 is one of the best responses of player 2.
\item To make sure player 1 not deviating, player 2 must ruin player 1's incentive again. "If you don't choose 8, you get nothing either, then why deviate?"
\end{itemize}
$$s^\ast_1 = 8 \ \ \ \ and$$
$$s^\ast_2(s_1) > 8 - s_1 \ \ if \ \ s_1 \in \{1,2,3,4,5,6,7,8\}$$
$$s^\ast_2(s_1) \in \{0,1,2,3,4,5,6,7,8\} \ \ if \ \ s_1 = 0$$
To conclude, the static NE is exactly the payoff outcome of the dynamic NE.
Dynamic NE are strategies that keep static NE stable.
\end{mdframed}
(1) Type 1:
$s^\ast_1 \in \{0,1,2,3,4,5,6,7,8\}$ and \\
$s^\ast_2(s_1) = 8 - s_1$ if $s_1 = s^\ast_1$, \\
$s^\ast_2(s_1) > 8 - s_1$ if $s_1 > s^\ast_1$, \\
$s^\ast_2(s_1) \in \{0,1,2,3,4,5,6,7,8\}$ if $s_1 < s^\ast_1$. \\
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\textit{Example:} $(4, (8,7,6,5,4,4,4,4,4))$
Here player 2 demands the pieces that are left if player 1 does not demand more than 4 pieces, but demands 4 pieces if player 1 demands more than 4 pieces.
To demand 4 pieces is a best response for player 1, given that he will not get anything if demands more than 4 pieces.
It is a best response for player 2, given that player 1 demands 4 pieces, as his strategy specifies.
\end{mdframed}
(2) Type 2:
$s^\ast_1 = 8$ and \\
$s^\ast_2(s_1) > 8 - s_1$ if $s_1 \in \{1,2,3,4,5,6,7,8\}$, \\
$s^\ast_2(s_1) \in \{0,1,2,3,4,5,6,7,8\}$ if $s_1 = 0$.
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\textit{Example:} $(8, (8,8,8,8,8,8,8,8,8))$
Here player 2 demands all the 8 pieces independently of what player 1 demands.
To demand all the 8 pieces is a best response for player 1, given that he will not get anything anyway.
It is a best response for player 2, given that player 1 demands all the 8 pieces, as his strategy specifies.
\end{mdframed}
%
%***************************************************
\subsection{Find all the pure-strategy subgame perfect equilibria.}
\label{subsec:spne}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
The NE found in Subquestion \ref{subsec:spne} sound good, but is player 2's threat like "if you choose more than 2, I'll let you have nothing" valid?
\begin{itemize}
\item If player 1 chooses 7, and the game is played only once, what will player 2 do to maximize utility (BR)?
\item "To give in and accept the 1 piece pizza left by player 1" is BR for player 2.
\end{itemize}
NE is an ex ante view of the game. But in a dynamic game, players need to think "if something already happened, what should I do", which is an ex post view.
\medskip
\textbf{Sequential rationality} (Watson pp.186): An optimal strategy for a player should maximize
his or her expected payoff, conditional on every information set
at which this player has the move. That is, player i’s strategy should
specify an optimal action from each of player i’s information sets, even
those that player i does not believe (ex ante) will be reached in the game.
\medskip
\textbf{SPNE} (Watson pp.189): A strategy profile is called a subgame perfect Nash equilibrium (SPNE) if it specifies a Nash equilibrium in every subgame of the original game.
\begin{itemize}
\item SPE is a NE
\item For games of perfect information, backward induction yields subgame perfect equilibria(Watson pp.191).
\item For games of imperfect information, we need to check every subgame (Read Watson pp.190).
\end{itemize}
Here is an example of extensive form when player 1 chooses 3 and 7 (I didn't draw the
whole extensive form because it takes too much space).
\tikzstyle{solid node}=[circle,draw,inner sep=1.5,fill=black]
\begin{tikzpicture}
\node(0)[solid node,label=left:{Player 1 chooses 3}]{}
[grow=east]
child{node[solid node,label=right:{$(0,0)$}]{} edge from parent node[below]{8} }
child{node[solid node,label=right:{$(0,0)$}]{} edge from parent node[below]{7} }
child{node[solid node,label=right:{$(0,0)$}]{} edge from parent node[below]{6} }
child{node[solid node, red, label=right:{$(3,5)$}]{} edge from parent[red] node[below]{5} }
child{node[solid node,label=right:{$(3,4)$}]{} edge from parent node[below]{4} }
child{node[solid node,label=right:{$(3,3)$}]{} edge from parent node[below]{3} }
child{node[solid node,label=right:{$(3,2)$}]{} edge from parent node[below]{2} }
child{node[solid node,label=right:{$(3,1)$}]{} edge from parent node[below]{1} }
child{node[solid node,label=right:{$(3,0)$}]{} edge from parent node[below]{0} }
;
\end{tikzpicture}
\captionof{figure}{When player 1 chooses 3}
\label{fig:s_1=3}
\begin{tikzpicture}
\node(0)[solid node,label=left:{Player 1 chooses 7}]{}
[grow=east]
child{node[solid node,label=right:{$(0,0)$}]{} edge from parent node[below]{8} }
child{node[solid node,label=right:{$(0,0)$}]{} edge from parent node[below]{7} }
child{node[solid node,label=right:{$(0,0)$}]{} edge from parent node[below]{6} }
child{node[solid node,label=right:{$(0,0)$}]{} edge from parent node[below]{5} }
child{node[solid node,label=right:{$(0,0)$}]{} edge from parent node[below]{4} }
child{node[solid node,label=right:{$(0,0)$}]{} edge from parent node[below]{3} }
child{node[solid node,label=right:{$(0,0)$}]{} edge from parent node[below]{2} }
child{node[solid node, red, label=right:{$(7,1)$}]{} edge from parent[red] node[below]{1} }
child{node[solid node,label=right:{$(7,0)$}]{} edge from parent node[below]{0} }
;
\end{tikzpicture}
\captionof{table}{When player 1 chooses 7}
\label{fig:s_1=7}
\medskip
With backward induction, we can find when player 1 chooses 7, player 2 will accept 1.
Therefore player 1 will never choose less than 7.
\smallskip
Then how about player 1 chooses 8? In this case, player 2 get nothing, no matter what he/she chooses. But on the other hand, player 2 can freely (there is nothing to lose, anyway) choose any pieces more than 0 to punish the greedy player 2 (ruin everything).
As a result, we have SPNE:
$$(7,(8,7,6,5,4,3,2,1,n)), \ n \in \{1,2,3,4,5,6,7,8\}$$
However, if player 2 doesn't decide to punish player 1 (maybe they don't want the restaurant owner to have the pizza back), there can still be a SPNE:
$$(8, (8,7,6,5,4,3,2,1,0))$$
The two types of SPNE results from the fact that player 2's payoff is 0 (and then indifferent to any choices) whenever player 1 chooses 8.
\end{mdframed}
(1) Type 1:
$s^\ast_1 = 7$ and \\
$s^\ast_2(s_1) = 8 - s_1$ if $s_1 \in \{0,1,2,3,4,5,6,7\}$, \\
$s^\ast_2(s_1) > 8 - s_1$ if $s_1 = 8$. \\
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Example: $(7, (8,7,6,5,4,3,2,1,1))$
Here player 2 demands the pieces that are left if player 1 demands less that all the 8 pieces, but demands 1 piece if player 1 demands all 8 pieces. This is a best response for player 2, not only if player 1 demands 7 pieces, as his strategy specifies, but also for all other choices that player 1 might do. To demand 7 pieces is a best response for player 1, given that he will not get anything if he demands all the 8 pieces.
\end{mdframed}
(2) Type 2:
$s^\ast_1 = 8$ and \\
$s^\ast_2(s_1) = 8 - s_1$ if $s_1 \in \{0,1,2,3,4,5,6,7,8\}$
That is: $(8, (8,7,6,5,4,3,2,1,0))$
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Here player 2 requires the pieces that are left. This is a best response for player 2, not only if player 1 demands all the 8 pieces, as his strategy specifies, but also for all other choices that player 1 might do. To demand all the 8 pieces is a best response for player 1.
\end{mdframed}
%
\vspace{-6pt}
\bigskip
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\section{Problem 2 - Best response sets}
Exercise 6.4
For the game of Figure 6.2 (Watson pp.55), determine the following best-response sets.
{\includegraphics[width=0.8\textwidth]{7.f6_2}
\label{fig:f6_2}}
\vspace{2mm}
%***************************************************
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\textbf{(a) $BR_1(\theta_2)$ for $\theta_2 = (1/6,1/3,1/2)$}
$$U^1_U(\theta_2) = \frac{1}{6} \times 2 + \frac{1}{3} \times 0 + \frac{1}{2}\times 4=\frac{14}{6}$$
$$U^1_M(\theta_2) = \frac{1}{6} \times 3 + \frac{1}{3} \times 0 + \frac{1}{2}\times 1=1$$
$$U^1_D(\theta_2) = \frac{1}{6} \times 1 + \frac{1}{3} \times 3 + \frac{1}{2}\times 2=\frac{13}{6}$$
$BR_1(\theta_2)=\{U\}$
\medskip
\textbf{(b) $BR_2(\theta_1)$ for $\theta_1 = (1/6,1/3,1/2)$}
$$U^2_L(\theta_1) = \frac{1}{6} \times 6 + \frac{1}{3} \times 3 + \frac{1}{2}\times 1=2.5$$
$$U^2_C(\theta_1) = \frac{1}{6} \times 4 + \frac{1}{3} \times 0 + \frac{1}{2}\times 5=2.5 + \frac{2}{3}$$
$$U^2_R(\theta_1) = \frac{1}{6} \times 4 + \frac{1}{3} \times 5 + \frac{1}{2}\times 3=2.5 + \frac{4}{3}$$
$BR_2(\theta_1)=\{R\}$
You just keep doing this...
\end{mdframed}
(a) $\{U\}$ \\ \indent (b) $\{R\}$ \\ \indent (c) $\{U\}$ \\ \indent (d) $\{U,D\}$ \\ \indent (e) $\{L,R\}$
\bigskip
\section{Problem 3 - BR functions, NE, rationalizable strategies}
(Watson Exercise 9.6 )
Consider a game in which, simultaneously, player 1 selects any real number
$x$ and player 2 selects any real number $y$. The payoffs are given by:
$$u_1(x,y)= 2x-x^2+2xy$$
$$u_2(x,y)= 10y-2xy -y^2$$
%***************************************************
\subsection{Calculate and graph each player's best-response function as a function
of the opposing player’s pure strategy.}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Given any y, how can player $1$ maximize his/her utility? FOC and SOC!
\end{mdframed}
\textbf{For player 1:}
\medskip
FOC:
$$\frac{d u_1(x,y)}{d x} = \frac{d 2x-x^2+2xy}{d x} = 2 - 2x +2y =0 \Rightarrow x = 1+y$$
SOC:
$$\frac{d^2 u_1(x,y)}{d x^2} = -2<0$$
Therefore $BR_1(y) = 1+y$
\medskip
\textbf{For player 2:}
\medskip
FOC:
$$\frac{d u_2(x,y)}{d y} = \frac{d 10y-2xy -y^2}{d y} = 10-2x-2y =0 \Rightarrow y = 5-x$$
SOC:
$$\frac{d^2 u_2(x,y)}{d y^2} = -2<0$$
Therefore $BR_2(x) = 5-x$
\begin{center}
\begin{tikzpicture}[scale = 0.9]
\draw[thick,<->] (0,8) node[left]{$y$}--(0,0)--(8,0) node[right]{$x$};
\draw[thick] (-2.5,0) --(0,0)--(0,-3.5);
\node [below left] at (0,0) {$0$};
\draw [red] (-2,7)--(7,-2)node[right]{$BR_2(x)$};
\draw [blue] (-2,-3)--(6,5)node[right]{$BR_1(y)$} ;
\node[left] at (0,5) {$5$} ;
\node[below] at (5,0) {$5$} ;
\node[left] at (0,-1) {$-1$} ;
\node[below] at (1,0) {$1$} ;
\node[below] at (3,0) {$3$} ;
\node[left] at (0,2) {$2$} ;
\draw [dashed] (0,2)--(3,2)node[right]{$NE={(3,2)}$};
\draw [dashed] (3,0)--(3,2);
\end{tikzpicture}
\captionof{figure}{$BR_1(y)$ and $BR_2(x)$}
\label{fig:br}
\end{center}
\vspace{2mm}
%***************************************************
\subsection{Find and report the Nash equilibria of the game.}
$NE(x^*,y^*)$ is a point s.t. $BR_1(y^*) = x^*$ and $BR_2(x^*)=y^*$, thus
$$x^* = 1+y^*$$
$$y^* = 5-x^*$$
(2 functions, 2 variables, we can solve $x^*,y^*$)
$\Rightarrow x^*= 3, y^*=2 \ \Rightarrow \ NE=(3,2)$
%***************************************************
\subsection{Determine the rationalizable strategy profiles for this game.}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\textbf{rationalizable strategies}(Watson pp.70): The set of strategies that
survive iterated dominance is therefore called the rationalizable strategies.
\textbf{Dominance}(Watson pp.50): A pure strategy $s_i$ of player $i$ is dominated if there is a strategy (\textbf{pure or mixed}) $\sigma_i \in \Delta S_i$ such that $u_i(\sigma_i , s_{-i}) > u_i (s_i , s_{-i})$, for all strategy profiles $s_{-i} \in S_{-i}$ of the other players.
\end{mdframed}
\begin{itemize}
\item Since $BR_1(y) = 1+y$, all the numbers in $(-\infty,+\infty)$ can be the best response of player 1 sometimes;
\item Since $BR_2(x) = 5-x$, all the numbers in $(-\infty,+\infty)$ can be the best response of player 2 sometimes too.
\end{itemize}
Therefore there is no dominated strategy (a number that can never be BR) for the two players.
The set of rationalizable strategies is $(-\infty, +\infty) \times (-\infty, +\infty) = (-\infty, +\infty)$.
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Note the symbol ``$\times$'' denotes the Cartesian product here. For example, if $S_1={A,B}, S_2={X,Y}$,then $$S= S_1 \times S_2 = {(A,X),(A,Y),(B,X),(B,Y)}$$
\end{mdframed}
\bigskip
\section{Problem 4 - True or False?}
For each of the statements, if true, try to explain why, and if false, provide a
counter-example.
\begin{itemize}
%
\item[(a)] In a finite extensive-form game of perfect information, there always exists a subgame perfect Nash equilibrium.
\medskip
True(Watson pp.188). A subgame-perfect Nash equilibrium can be constructed by using backward induction.
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
A more detailed explanation is on Jehle \& Reny pp.317 : every finite extensive-form game possesses at least one NE.
\end{mdframed}
\item[(b)] In a finite extensive-form game of perfect information, there always exists a unique subgame perfect Nash equilibrium.
\medskip
False. The pizza game is a complex counter-example. Here is another:
\end{itemize}
\begin{center}
\tikzstyle{solid node}=[circle,draw,inner sep=1.5,fill=black]
\begin{tikzpicture}
\node(0)[solid node,label=left:{P1}]{}
[grow=east]
child{node(1)[solid node,label=below:{P2}]{}
child{node(2)[solid node,label=right:{$(0,2)$}]{} edge from parent node[below]{b}}
child{node(2)[solid node,label=right:{$(2,2)$}]{} edge from parent node[above]{a}}
edge from parent node[below,xshift=-3]{in}}
child{node(1)[solid node,label=right:{$(1,1)$}]{} edge from parent node[above,xshift=-3]{out}};
\end{tikzpicture}
\captionof{figure}{Counter-example}
\label{fig:example}
\end{center}
When player 2 is \textbf{indifferent}(recall the pizza game) to $a$ and $b$, there can be many SPNE:
$$(out,(b,b)),(out,(a,b)),(in,(b,a)),(in,(a,a))$$
Here $(a,b)$ means $s_2(out)=a, s_2(in)=b$.
\section{Problem 5- Firm-union bargaining}
A firm's output is $L(100-L)$ when it uses $L \leq 50$ units of labor, and $2500$ when it uses
$L \geq 50$ units of labor. The price of output is $1$. A union that represents workers
presents a wage demand (a nonnegative number $w$), which the firm either accepts or rejects. If
the firm accepts the demand, it chooses the number $L$ of workers to employ (which you should
take to be a continuous variable, not an integer); if it rejects the demand, no production
takes place ($L = 0$). The firm's preferences are represented by its profits, the union's
preferences are represented by the value of $wL$.
%***************************************************
\subsection{Formulate this situation as an extensive game with perfect information. }
\textbf{Players}: $N = \{U, F \}$. \\
\textbf{Strategies}:
\begin{itemize}
\item $U$ chooses a wage $w$ from the set of non-negative number;
\item $F$ chooses a function that to any non-negative wage $w$ determines a non-negative employment $L(w)$.
\end{itemize}
\textbf{Payoffs}:
\begin{itemize}
\item The union's payoff is $U^U(L,w)=wL(w)$;
\item The firm's payoff is
\begin{itemize}
\item $U^L(L,w)=L(w)(100-L(w)) - wL(w)$ if $L(w) \le 50$
\item $U^L(L,w)=2500 - wL(w)$ if $L(w) \ge 50$
\end{itemize}
\end{itemize}
Note $L(w) = 0$ is in effect a rejection by the firm of the demand $w$, giving both a payoff of $0$.
%
%***************************************************
\subsection{Find the subgame perfect equilibrium (equilibria?) of the game.}
(1) Given any wage $w$, the firm wants to maximize its profit.
FOC:
$$\frac{d U^L(L,w)}{d L} = \frac{d L(w)(100-L(w)) - wL(w)}{d L} = 100-2L-w =0 \Rightarrow L(w) = 50-0.5w$$
SOC:
$$\frac{d^2 U^L(L,w)}{d L^2} = -2<0$$
(2) The union realizes the firm's best response, and maximizes its utility according to it:
$$\max_{w} U^U(w) = w (50-0.5w)$$
FOC:
$$\frac{d U^U(w)}{d w} = \frac{d w (50-0.5w)}{d w} = 50-w =0 \Rightarrow w = 50$$
SOC:
$$\frac{d^2 U^U(L,w)}{d L^2} = -1<0$$
When $w=50$, $L(50)=50-0.5\times50 =25$
SPNE: $(w= 50,50-0.5\times w)$
%
%***************************************************
\subsection{Is there an outcome of the game that both parties prefer to any subgame perfect
equilibrium outcome? }
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
"An outcome that both parties prefer to any SPNE outcome" means Pareto improvement exists.
\medskip
For this kind of welfare problem, think what will happen if you're a ``social planner", i.e. you can allocate resources freely between $F$ and $U$, and what you care is the joint surplus $U^T=U^F+U^U$.
\end{mdframed}
$$U^T=U^F+U^U = L(100-L) - wL +wL =L(100-L)$$
FOC:
$$\frac{d U^T(L)}{d L} = \frac{d L(100-L)}{d L} = 100-2L =0 \Rightarrow L = 50$$
SOC:
$$\frac{d^2 U^T(L)}{d L^2} = -2<0$$
Therefor $U^T_{max} = 50 (100-50) =2500$.
\medskip
Compare with SPNE $(w= 50,50-0.5\times w)$:
$$U^F_{SPNE} = 25(100-25)-50\times 25 = 625$$
$$U^U_{SPNE} = 50 \times 25 = 1250$$
$$U^T_{SPNE} = 625 + 1250 = 1875$$
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Obviously, if the firm cooperates with the union, the joint surplus is more than the one in SPNE.
\medskip
Now let's check if it's possible to allocate $U^T_{max} = 2500$ between the firm and the union s.t. at least one player's welfare is more than SPNE outcome, without harming the other player (Pareto improvement).
\end{mdframed}
\medskip
(1) If we keep the firm intact ($U$ benefits the most), i.e. let $U^F = U^F_{SPNE} = 625$,
we have $U^U=U^T-U^F = 2500-625 = 1875$ left for the union, i.e. $U^U = 1875$.
The wage $w= \frac{U^U = 1875}{50}=37.5$;
\medskip
(2) If we keep the union intact ($F$ benefits the most), i.e. let $U^U = U^U_{SPNE} = 1250$,
Given $L = 50$, the wage $w= \frac{U^U = 1250}{50}=25$; Now
we have $U^F =U^T-U^U = 2500-1250 = 1250$ left for the firm.
\medskip
Actually, at this employment level ($L=50$), any wage $w \in [25,37.5]$ would lead to a Pareto-improvement.
%
%***************************************************
\subsection{Find a Nash equilibrium for which the outcome differs from any subgame perfect
equilbrium outcome.}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
SPNE are NE without "empty threat". To find a NE different from SPME, we can start by making an empty threat.
\end{mdframed}
Now the firm makes a threat on low wage, "refuse to hire anyone if $w > 20$", i.e.:
\begin{equation}
L(w)=
\begin{cases}
50-0.5w \ \ if \ \ w \le 20 \\
0 \ \ if \ \ w > 20 \\
\end{cases}
\label{eq:threat}
\end{equation}
For such a threat, the union's BR is to accept $w=20$.
Note also $L = 50-0.5w$ is the BR of the firm. Then both of the two players will not deviate.
($w=20$, the threat above) is a NE but not a SPNE.
\end{document}