-
Notifications
You must be signed in to change notification settings - Fork 1
/
Seminar 3-Duality of Consumers Behavior.tex
406 lines (297 loc) · 16.5 KB
/
Seminar 3-Duality of Consumers Behavior.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\setlength{\parindent}{0pt}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=magenta,
urlcolor=cyan}
\usepackage{graphicx}
\graphicspath{ {./pic/} }
\usepackage{multicol}
\usepackage{lscape}
\usepackage{fourier,amssymb,microtype,amsmath,gensymb}
\newcommand{\R}{\mathbb{R}}
\usepackage{mdframed,caption,xcolor}
\usepackage{tikz,tkz-euclide}
\title{Seminar 3.Duality of Consumers Behavior}
\author{Xiaoguang Ling \\ \href{xiaoguang.ling@econ.uio.no}{xiaoguang.ling@econ.uio.no}}
\date{\today}
\begin{document}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{landscape}
\section*{Consumption Duality}
\begin{mdframed}[backgroundcolor=yellow!20,linecolor=white]
You will never lose your way with this Consumption Duality map!
All "derive this from that and verify some guy's equation"-like questions can be
solved by finding the correct (shortest) route.
\end{mdframed}
\vspace{3mm}
{\scriptsize
\usetikzlibrary{arrows.meta}
\tikzset{%
>={Latex[width=1mm,length=1mm]},
% Specifications for style of nodes:
base/.style = {rectangle, rounded corners, draw=black,
minimum width=2cm, minimum height=1cm,
text centered, font=\sffamily},
Starts/.style = {base, fill=blue!30},
process/.style = {base, minimum width=2.5cm, fill=orange!15,
font=\ttfamily},
}
\begin{tikzpicture}[node distance=2cm,
every node/.style={fill=white, font=\sffamily}, align=center]
\node (start) [Starts] {Utility Maximization: \\ $\max_{x \in \R^n_+} \ u(x), s.t. px \le y$};
\node (1) [process, below of=start] {Marshallian Demand: \\ \ $x(p,y)$};
\node (2) [process, below of=1] {Indirect Utility: \\ $v(p,y) = u[x(p,y)]$};
\node (3) [process, left of=2,xshift=-1.5cm,yshift=1cm] {Roy's Identity(pp.29): \\ $x_i(p^0,y^0) = - \frac{\partial v(p^0,y^0) / \partial p_i}{\partial v(p^0,y^0) / \partial y}$};
\node (4) [process, below of=2] {Direct Utility (pp.82): \\ $u(x) = \min_{p \in \R^n_{++}} v(p,1), s.t. px=1$};
\node (5) [process, below of=4] {Inverse Demands: \\ $p_i(x)$};
\node (6) [process, left of=5,xshift=-1.5cm,yshift=1cm] {Hotelling, Wold (pp.84) \\ $p_i(x) = \frac{\partial u(x) / \partial x_i}{\Sigma^{n}_{j=1} x_j( \partial u(x) / \partial x_j)}$};
\draw[->] (start) -- (1);
\draw[->] (1) -- (2);
\draw[dashed] (2) -- (3);
\draw[dashed] (3) -- (1);
\draw[->] (2) -- (4);
\draw[->] (4) -- (5);
\draw[dashed] (4) -- (6);
\draw[dashed] (6) -- (5);
{\tiny
\path (start) to node {solution $x^*$} (1);
\path (1) to node {maximized value} (2);
\path (4) to node {solution $p^*$} (5);
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\node (start2) [Starts, right of = 1, xshift =9cm, yshift=2cm] {Expenditure Minimization: \\ $\min_{x \in \R^n_+} \ px, s.t. u \ge \bar{u}$};
\node (21) [process, below of=start2] {Hicksian Demand: \\ $x^h(p,\bar{u})$};
\node (22) [process, below of=21] {Expenditure: \\ $e(p,\bar{u}) = px^h(p,\bar{u})$};
\node (23) [process, right of=22,xshift=1.5cm,yshift=1cm] {Shephard's lemma(pp.37): \\ $\frac{\partial e(p^0,u^0)}{\partial p_i} = x^h(p^0,u^0)$};
\node (24) [process, below of=22] {Direct Utility (pp.75): \\ $u(x) \equiv max\{u \le 0 | x \in A(u) \}$};
\draw[->] (start2) -- (21);
\draw[->] (21) -- (22);
\draw[dashed] (22) -- (23);
\draw[dashed] (23) -- (21);
\draw[->] (22) -- (24);
{\tiny
\path (start2) to node {solution $x^*$} (21);
\path (21) to node {minimized value} (22);
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\node (31) [process, right of=1,xshift=3.5cm,yshift=2cm] {Slutsky equation(pp.53): \\ $\frac{\partial x_i(p,y)}{\partial p_j} = \frac{\partial x_i^h(p,u^*)}{\partial p_j} - x_j(p,y)\frac{\partial x_i(p,y)}{\partial y}$};
\node (32) [process, below of=31,yshift=-4cm] {$e[p,v(p,y)] = y$ \\ $v[p,e(p,u)] = u$};
\draw[dashed] (1) -- (31);
\draw[dashed] (31) -- (21);
\draw[<-] (2) -- (32);
\draw[->] (32) -- (22);
\draw[-,blue] (21) -- (2.north east);
\draw [->,blue] (2.north east) -- (1) ;
\path (21) to node[below, sloped, xshift=-3cm] {$x(p,y) = x^h[p,v(p,y)]$} (2.north east);
\draw[-,red] (22.north west) -- (1);
\draw [->,red] (22.north west) -- (21) ;
\path (1) to node[below, sloped, xshift=3cm] {$x^h(p,\bar{u}) = x[p,e(p,\bar{u})]$} (22.north west);
\end{tikzpicture}
}
\end{landscape}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Jehle \& Reny 2.3}
Derive the consumer’s direct utility function if his indirect utility function has the form $v(p, y) =
yp_1^\alpha p_2^\beta$ for negative $\alpha$ and $\beta$.
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\textbf{THEOREM 2.3 Duality Between Direct and Indirect Utility}(Jehle \& Reny pp.81 )
Suppose that $u(x)$ is quasiconcave and differentiable on $\R^n_{++}$ with strictly positive partial derivatives there. Then for all $x \in \R^n_{++}$ , $v(p, p \cdot x)$, the indirect utility function generated
by $u(x)$, achieves a minimum in $p$ on $\R^n_{++}$, and
$$u(x) = \min_{p \in \R^n_{++}} v(p,y), s.t. px=y$$
Let's call the solution $p^*$
Note that by \textbf{Theorem 1.6}(Jehle \& Reny pp.29), $v(p, y)$ is homogeneous of degree zero in $(p, y)$. We have $v(p, p \cdot x) = v(p/(p \cdot x), 1)$ whenever $p \cdot x > 0$. Thus the equation above can also be written as:
$$u(x) = \min_{p \in \R^n_{++}} v(p,1), s.t. px=1$$
The solution $\hat{p} = p^* / p^* \cdot x = p^* / y$. We don't care about the difference between $\hat{p}$ and $p^*$ because once you substitute them into $v(p,p\cdot x)$, you have the same result (homogeneity of degree zero).
\vspace{3mm}
\textcolor{red}{Besides, homogeneous of degree zero in $(p, y)$ also indicates $\alpha + \beta = -1$ because:
$$v(tp, ty) =
ty(tp_1^\alpha) (tp_2)^\beta = t^{1+\alpha + \beta}v(p, y)$$}
\end{mdframed}
$$u(x) = \min_{p \in \R^n_{++}} v(p, 1) =
p_1^\alpha p_2^\beta, s.t. px=1$$
Lagrangian:
$$L = p_1^\alpha p_2^\beta + \lambda (1- p_1x_1 - p_2x_2)$$
Note there should not be corner solution since
\begin{itemize}
\item Since $ \alpha, \beta < 0, p$ can't be $0$.
\item You can also argue: $\lim_{p_i \to 0} \frac{\partial v(p_1,p_2,1)}{\partial p_i} = - \infty, i=1,2$
\item $v(p,1)$ is decreasing in $p$(this is always true for indirect utility function, see pp.29). For any $px<1$, you can always decrease $v(p, 1)$ by increasing $p$ until $px = 1$.
\end{itemize}
FOCs.
\begin{equation}
\begin{cases}
\frac{\partial L}{\partial p_1} = \alpha p_1^{\alpha - 1} p_2^\beta - \lambda x_1= 0 \\
\frac{\partial L}{\partial p_2} = p_1^{\alpha} \beta p_2^{\beta - 1} - \lambda x_2 = 0 \\
p_1x_1 + p_2x_2 = 1
\end{cases}
\nonumber
\end{equation}
Simplify:
\begin{equation}
\begin{cases}
\alpha p_1^{\alpha - 1} p_2^\beta = \lambda x_1 \\
\beta p_1^{\alpha} p_2^{\beta - 1} = \lambda x_2 \\
p_1x_1 + p_2x_2 = 1
\end{cases}
\label{eq:2_3_foc}
\end{equation}
Take the ratio between first and second condition to get:
$$\frac{x_1}{x_2} = \frac{\alpha}{\beta} \frac{p_2}{p_1}$$
Thus: $p_2 = \frac{\beta}{\alpha}\frac{x_1}{x_2} p_1 $
Substitute $p_2$ with $p_1$ in the 3rd condition to get:
\textcolor{red}{\begin{align*}
p_1x_1 + \frac{\beta}{\alpha}\frac{x_1}{x_2} p_1 x_2 &= 1 \\
p_1(x_1 + \frac{\beta}{\alpha} x_1) &= 1 \\
p_1^* &= \frac{1}{x_1(1+ \frac{\beta}{\alpha})} \\
p_1^* &= \frac{\alpha}{x_1(\alpha+ \beta)} \\
p_1^* &= -\frac{\alpha}{x_1} \\
\Rightarrow p_2^* &= \frac{\beta}{\alpha} \frac{x_1}{x_2} p_1 =\frac{\beta}{\alpha} \frac{x_1}{x_2}(-\frac{\alpha}{x_1}) = -\frac{\beta}{x_2}
\end{align*}}
Substitute $p^*_1$ and $p^*_2$ into $v(p,1)$ we get the minimized value, i.e. the direct utility function:
\begin{align*}
u(x_1.x_2) &= [-\frac{\alpha}{x_1}]^\alpha[-\frac{\beta}{x_2}]^\beta \\
&= A x_1^a x_2^b
\end{align*}
\textcolor{red}{
Where $A = [-\alpha]^\alpha[-\beta]^\beta$ ,$a = -\alpha >0$ , $b= -\beta > 0$. The utility function is a Cobb-Douglas function.}
\begin{mdframed}[backgroundcolor=yellow!20,linecolor=white]
As a cautious proof, you may want to check if $u(x)$ is quasiconcave and differentiable on $\R^n_{++}$ with strictly positive partial derivatives there, as assumed by Theorem 2.3.
In exam for this course, again, if the function is one- dimension, you should prove it; if it's a higher-dimension function, the proof is not required.
\end{mdframed}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\textcolor{red}{
\textbf{Alternative 1:
\vspace{2mm}
You can use Roy's Identity(Jehle \& Reny pp.29): $$x_i(p^0,y^0) = - \frac{\partial v(p^0,y^0) / \partial p_i}{\partial v(p^0,y^0) / \partial y}$$
to get Marshallian demands directly (Note here $p^*_i = \frac{p_i}{y}$):
\begin{equation}
\begin{cases}
x_1 = - \frac{\alpha}{p^*_1} \\
x_2 = - \frac{\beta}{p^*_1}
\end{cases}
\nonumber
\end{equation}}
\vspace{2mm}
Then solve the Inverse demand from Marshallian demands:
\begin{equation}
\begin{cases}
p_1^* &= -\frac{\alpha}{x_1} \\
p_2^* &= -\frac{\beta}{x_1} \\
\end{cases}
\nonumber
\end{equation}
Substitute into $v(p,1)$ you'll have the same solution.
}
\vspace{2mm}
\textbf{Alternative 2:}
\vspace{2mm}
Like Jehle \& Reny 1.51, you can actually transform $v(p_1,p_2,1)$ into a function of only $p_1$ or $p_2$ using $p_1x_1 + p_2x_2 = 1$.
$$p_1 = \frac{1 - p_2x_2}{x_1}$$
Substitute into $v(p_1,p_2,1)$ to have:
$$v(p_1,p_2,1) = [\frac{1 - p_2x_2}{x_1}]^\alpha p_2^\beta$$
Since the question ask you to minimize $v(p_1,p_2,1)$, if you solve $\frac{d e(p_2)}{d p_2} = 0$ and get only one solution, it is the solution.
\begin{align*}
\frac{d e(p_2)}{d p_2} = \alpha(\frac{1-p_2x_2}{x_1})^{\alpha -1}(\frac{-x_2}{x_1})p_2^\beta + \frac{1 - p_2x_2}{x_1}^\alpha \beta p_2^{\beta -1} &= 0 \\
\alpha(\frac{1-p_2x_2}{x_1})^{\alpha -1}(\frac{x_2}{x_1})p_2^\beta &= \frac{1 - p_2x_2}{x_1}^\alpha \beta p_2^{\beta -1} \\
\alpha(\frac{x_1}{1-p_2x_2})(\frac{x_2}{x_1})p_2 &= \beta \\
\alpha(\frac{x_2}{1-p_2x_2}) p_2 &= \beta \\
\alpha x_2 p_2 &= \beta-\beta x_2 p_2 \\
(\alpha x_2 + \beta x_2) p_2&= \beta \\
p^*_2&= \frac{\beta}{(\alpha + \beta)x_2}
\end{align*}
You then solve $p^*_1$ with the budget constraint.
\end{mdframed}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Jehle \& Reny 2.5(a)}
Consider the solution, $e(p, u) = up_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3}$ at the end of Example 2.3.
Derive the \textbf{indirect utility function} through the relation $e(p, v(p, y)) = y$ and verify Roy's identity.
\vspace{3mm}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Example 2.3 on Jehle \& Reny pp.90 is a question from $x_i(p,y)$ to $e(p,u)$, where the Marshallian demand function is:
$$x_i(p_1,p_2,p_3,y) = \frac{\alpha_i y}{p_i} , \ i=1,2,3$$
$\alpha_i >0$ and $\alpha_1+\alpha_2+\alpha_3 = 1$
Check your map, the route is (note the expression below is only for the purpose of teaching and very informal):
$$x_i(p,y) \Rightarrow x^h(p,u) = x[p,e(p,u)] \Leftarrow \frac{\partial e(p,u)}{\partial p_i} = x^h(p,u)$$
\begin{align*}
x[p,e(p,u)] &= \frac{\partial e(p,u)}{\partial p_i} \\
\frac{\alpha_i e(p,u)}{p_i} &= \frac{\partial e(p,u)}{\partial p_i} \\
\frac{\alpha_i }{p_i} &= \frac{1}{e(p,u)}\frac{\partial e(p,u)}{\partial p_i} \\
&= \frac{\partial ln[e(p,u)]}{\partial p_i}
\end{align*}
The rest part of the solution in the textbook is clear. Read page 91 if you're curious how we solve $e(p,u)$ out. It need "a little thought" as the textbook said :)
\end{mdframed}
\textbf{Indirect utility function}:
We already know $e(p, v(p, y)) = y$.
Substitute $v(p, y)$ into $e(p, u) = y$ will solve the question directly:
$$e(p, u) = v(p, y) p_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3} = y$$
$$\Rightarrow v(p, y) = \frac{y}{p_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3}}$$
\textbf{Verify Roy's identity}:
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Roy's Identity(Jehle \& Reny pp.29): $$x_i(p^0,y^0) = - \frac{\partial v(p^0,y^0) / \partial p_i}{\partial v(p^0,y^0) / \partial y}$$
\textbf{Intuition}:Your optimal consumption plan (Marshallian demand) is a trade- off between the importance of "comodity $i$" and "money ($y$)".
\end{mdframed}
$$\frac{\partial v(p,y)} {\partial p_1} = \frac{\partial yp_1^{-\alpha_1}p_2^{-\alpha_2}p_3^{-\alpha_3}}{\partial p_1} = -\alpha_1 yp_1^{-\alpha_1 -1}p_2^{-\alpha_2}p_3^{-\alpha_3}$$
$$\frac{\partial v(p,y)} {\partial p_2} = -\alpha_3 yp_1^{-\alpha_1}p_2^{-\alpha_2-1}p_3^{-\alpha_3}$$
$$\frac{\partial v(p,y)} {\partial p_3} = -\alpha_3 yp_1^{-\alpha_1}p_2^{-\alpha_2}p_3^{-\alpha_3-1}$$
$$\frac{\partial v(p,y)} {\partial y} = p_1^{-\alpha_1}p_2^{-\alpha_2}p_3^{-\alpha_3}$$
Therefore:
$$-\frac{\partial v(p,y) / \partial p_1}{\partial v(p,y) / \partial y} =-\frac{-\alpha_1 yp_1^{-\alpha_1 -1}p_2^{-\alpha_2}p_3^{-\alpha_3}}{p_1^{-\alpha_1}p_2^{-\alpha_2}p_3^{-\alpha_3}} = \frac{\alpha_1 y}{p_1}$$
$$-\frac{\partial v(p,y) / \partial p_2}{\partial v(p,y) / \partial y} =-\frac{-\alpha_3 yp_1^{-\alpha_1}p_2^{-\alpha_2-1}p_3^{-\alpha_3}}{p_1^{-\alpha_1}p_2^{-\alpha_2}p_3^{-\alpha_3}} = \frac{\alpha_2 y}{p_2}$$
$$-\frac{\partial v(p,y) / \partial p_3}{\partial v(p,y) / \partial y} =-\frac{ -\alpha_3 yp_1^{-\alpha_1}p_2^{-\alpha_2}p_3^{-\alpha_3-1}}{p_1^{-\alpha_1}p_2^{-\alpha_2}p_3^{-\alpha_3}} = \frac{\alpha_3 y}{p_3}$$
Compare with the Marshallian demand!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Jehle \& Reny 2.7}
Derive the consumer's \textbf{inverse demand functions}, $p_1(x_1, x_2)$ and $p_2(x_1, x_2)$, when the \textbf{utility function} is of the Cobb-Douglas form, $u(x_1, x_2) = Ax_1^{\alpha}x_2^{1-\alpha}$ for $0 < \alpha < 1$.
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
The shortest route is using Hotelling, Wold (pp.84) directly.
$$p_i(x) = \frac{\partial u(x) / \partial x_i}{\Sigma^{n}_{j=1} x_j( \partial u(x) / \partial x_j)}$$
\textbf{Intuition}: the price reflects how important the commodity is.
\vspace{3mm}
The duality between direct and indirect utility functions showed by Hotelling, Wold makes it (hopefully) easier to solve $p_i^*(x)$
\end{mdframed}
\begin{align*}
p_1(x_1,x_2) &= \frac{\partial (Ax_1^{\alpha}x_2^{1-\alpha}) / \partial x_1}{\Sigma^{2}_{j=1} x_j( \partial (Ax_1^{\alpha}x_2^{1-\alpha}) / \partial x_j)} \\
&=\frac{\partial (Ax_1^{\alpha}x_2^{1-\alpha}) / \partial x_1}{x_1 \partial (Ax_1^{\alpha}x_2^{1-\alpha}) / \partial x_1 + x_2 \partial (Ax_1^{\alpha}x_2^{1-\alpha}) / \partial x_2} \\
&=\frac{A\alpha x_1^{\alpha -1}x_2^{1-\alpha}}{x_1 A\alpha x_1^{\alpha -1}x_2^{1-\alpha} + x_2A(1-\alpha) x_1^{\alpha}x_2^{-\alpha}} \\
&=\frac{\alpha x_1^{\alpha -1}x_2^{1-\alpha}}{\alpha x_1^{\alpha}x_2^{1-\alpha} + (1-\alpha) x_1^{\alpha}x_2^{1-\alpha}} \\
&=\frac{\alpha}{x_1}
\end{align*}
\begin{align*}
p_2(x_1,x_2) &= \frac{\partial (Ax_1^{\alpha}x_2^{1-\alpha}) / \partial x_2}{\Sigma^{2}_{j=1} x_j( \partial (Ax_1^{\alpha}x_2^{1-\alpha}) / \partial x_j)} \\
&=\frac{\partial (Ax_1^{\alpha}x_2^{1-\alpha}) / \partial x_2}{x_1 \partial (Ax_1^{\alpha}x_2^{1-\alpha}) / \partial x_1 + x_2 \partial (Ax_1^{\alpha}x_2^{1-\alpha}) / \partial x_2} \\
&=\frac{A(1-\alpha) x_1^{\alpha}x_2^{-\alpha}}{x_1 A\alpha x_1^{\alpha -1}x_2^{1-\alpha} + x_2A(1-\alpha) x_1^{\alpha}x_2^{-\alpha}} \\
&=\frac{(1-\alpha) x_1^{\alpha}x_2^{-\alpha}}{\alpha x_1^{\alpha}x_2^{1-\alpha} + (1-\alpha) x_1^{\alpha}x_2^{1-\alpha}} \\
&=\frac{1-\alpha}{x_2}
\end{align*}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
You can also try another route: maximize $u(x) \Rightarrow x(p,y) \Rightarrow p_i(x) = x^{-1}(x,1)$
Use Lagrangian to maximize $u(x_1, x_2) = Ax_1^{\alpha}x_2^{1-\alpha}$
s.t. $p_1x_2 + p_2x_2 = 1$. The solution (Marshallian demands) is:
\begin{equation}
\begin{cases}
x_1 = \frac{\alpha}{p_1} \\
x_2 = \frac{1-\alpha}{p_2}
\end{cases}
\nonumber
\end{equation}
The inverse of Marshallian demand function gives the inverse demand function
\begin{equation}
\begin{cases}
p_1 = \frac{\alpha}{x_1} \\
p_2 = \frac{1-\alpha}{x_2}
\end{cases}
\nonumber
\end{equation}
Another example:
\begin{itemize}
\item You can also try to derive $p_i(x)$ from the Marshallian demand E.1 on pp. 32 and compare with the result derived from Hotelling-Wold identity on pp. 85. Both of them should be the same as E.5-E.6 on pp. 83, which is the solution for $v(p,1)$ minimization problem.
\end{itemize}
\end{mdframed}
\end{document}