forked from gap-system/gap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dt.c
1750 lines (1600 loc) · 69.3 KB
/
dt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/****************************************************************************
**
** This file is part of GAP, a system for computational discrete algebra.
**
** Copyright of GAP belongs to its developers, whose names are too numerous
** to list here. Please refer to the COPYRIGHT file for details.
**
** SPDX-License-Identifier: GPL-2.0-or-later
**
** This file implements the part of the deep thought package which deals
** with computing the deep thought polynomials.
**
** Deep Thought deals with trees. A tree <tree> is a concatenation of
** several nodes where each node is a 5-tuple of immediate integers. If
** <tree> is an atom it contains only one node, thus it is itself a
** 5-tuple. If <tree> is not an atom we obtain its list representation by
**
** <tree> := topnode(<tree>) concat left(<tree>) concat right(<tree>) .
**
** Let us denote the i-th node of <tree> by (<tree>, i) and the tree rooted
** at (<tree>, i) by tree(<tree>, i). Let <a> be tree(<tree>, i)
** The first entry of (<tree>, i) is pos(a),
** and the second entry is num(a). The third entry of (<tree>, i) gives a
** mark.(<tree>, i)[3] = 1 means that (<tree>, i) is marked,
** (<tree>, i)[3] = 0 means that (<tree>, i) is not marked. The fourth entry
** of (<tree>, i) contains the number of knodes of tree(<tree>, i). The
** fifth entry of (<tree>, i) finally contains a boundary for
** pos( tree(<tree>, i) ). (<tree>, i)[5] <= 0 means that
** pos( tree(<tree>, i) ) is unbounded. If tree(<tree>, i) is an atom we
** already know that pos( tree(<tree>, i) ) is unbound. Thus we then can
** use the fifth component of (<tree>, i) to store the side. In this case
** (<tree>, i)[5] = -1 means that tree(<tree>, i) is an atom from the
** right hand word, and (<tree>, i)[5] = -2 means that tree(<tree>, i) is
** an atom from the left hand word.
**
** A second important data structure deep thought deals with is a deep
** thought monomial. A deep thought monomial g_<tree> is a product of
** binomial coefficients with a coefficient c. Deep thought monomials
** are represented in this implementation by formula
** vectors, which are lists of integers. The first entry of a formula
** vector is 0, to distinguish formula vectors from trees. The second
** entry is the coefficient c, and the third and fourth entries are
** num( left(tree) ) and num( right(tree) ). The remaining part of the
** formula vector is a concatenation of pairs of integers. A pair (i, j)
** with i > 0 represents binomial(x_i, j). A pair (0, j) represents
** binomial(y_gen, j) when word*gen^power is calculated.
**
** Finally deep thought has to deal with pseudorepresentatives. A
** pseudorepresentative <a> is stored in list of length 4. The first entry
** stores left( <a> ), the second entry contains right( <a> ), the third
** entry contains num( <a> ) and the last entry finally gives a boundary
** for pos( <b> ) for all trees <b> which are represented by <a>.
*/
#include "dt.h"
#include "calls.h"
#include "error.h"
#include "gvars.h"
#include "integer.h"
#include "modules.h"
#include "plist.h"
static void UnmarkTree(Obj z);
static UInt Mark(Obj tree, Obj reftree, Int indexx);
static Int AlmostEqual(Obj tree1, Int index1, Obj tree2, Int index2);
static Int Equal(Obj tree1, Int index1, Obj tree2, Int index2);
static Obj Mark2(Obj tree, Int index1, Obj reftree, Int index2);
static UInt FindTree(Obj tree, Int indexx);
static Obj MakeFormulaVector(Obj tree, Obj pr);
static Int Leftof(Obj tree1, Int index1, Obj tree2, Int index2);
static Int Leftof2(Obj tree1, Int index1, Obj tree2, Int index2);
static Int Earlier(Obj tree1, Int index1, Obj tree2, Int index2);
static void FindNewReps(Obj tree, Obj reps, Obj pr, Obj max);
static void FindSubs(Obj tree,
Int x,
Obj list1,
Obj list2,
Obj a,
Obj b,
Int al,
Int ar,
Int bl,
Int br,
Obj reps,
Obj pr,
Obj max);
static void SetSubs(Obj list, Obj a, Obj tree);
static void UnmarkAEClass(Obj tree, Obj list);
#ifdef TEST_TREE
static void TestTree(Obj tree);
static Obj Part(Obj list, Int pos1, Int pos2);
#endif
/****************************************************************************
**
*F DT_POS(tree, index) . . . . . . . . . . . . . position of (<tree>, index)
**
** 'DT_POS' returns pos(<a>) where <a> is the subtree of <tree> rooted at
** (<tree>, index). <index> has to be a positive integer less or equal than
** the number of nodes of <tree>.
*/
#define DT_POS(tree, index) \
(ELM_PLIST(tree, (index-1)*5 + 1 ) )
/***************************************************************************
**
*F SET_DT_POS(tree, index, obj) . . . assign the position of(<tree>, index)
**
** 'SET_DT_POS sets pos(<a>) to the object <obj>, where <a> is the subtree
** of <tree>, rooted at (<tree>, index). <index> has to be a positive
** integer less or equal to the number of nodes of <tree>
*/
#define SET_DT_POS(tree, index, obj) \
SET_ELM_PLIST(tree, (index-1)*5 + 1, obj)
/***************************************************************************
**
*F DT_GEN(tree, index) . . . . . . . . . . . . . generator of (<tree>, index)
**
** 'DT_GEN' returns num(<a>) where <a> is the subtree of <tree> rooted at
** (<tree>, index). <index> has to be a positive integer less or equal than
** the number of nodes of <tree>.
*/
#define DT_GEN(tree, index) \
(ELM_PLIST(tree, (index-1)*5 + 2) )
/**************************************************************************
**
*F DT_IS_MARKED(tree, index) . . . . . . tests if (<tree>, index) is marked
**
** 'DT_IS_MARKED' returns 1 (as C integer) if (<tree>, index) is marked, and
** 0 otherwise. <index> has to be a positive integer less or equal to the
** number of nodes of <tree>.
*/
#define DT_IS_MARKED(tree, index) \
(INT_INTOBJ (ELM_PLIST(tree, (index-1)*5 + 3) ) )
/**************************************************************************
**
*F DT_MARK(tree, index) . . . . . . . . . . . . . . . . . . . . mark a node
**
** 'DT_MARK' marks the node (<tree>, index). <index> has to be a positive
** integer less or equal to the number of nodes of <tree>.
*/
#define DT_MARK(tree, index) \
SET_ELM_PLIST(tree, (index-1)*5 + 3, INTOBJ_INT(1) )
/**************************************************************************
**
*F DT_UNMARK(tree, index) . . . . . . . . . . . remove the mark from a node
**
** 'DT_UNMARK' removes the mark from the node (<tree>, index). <index> has
** has to be a positive integer less or equal to the number of nodes of
** <tree>.
*/
#define DT_UNMARK(tree, index) \
SET_ELM_PLIST(tree, (index-1)*5 + 3, INTOBJ_INT(0) )
/****************************************************************************
**
*F DT_RIGHT(tree, index) . . . .determine the right subnode of (<tree>, index)
*F DT_LEFT(tree, index) . . . . determine the left subnode of (<tree>, index)
**
** 'DT_RIGHT' returns the right subnode of (<tree>, index). That means if
** DT_RIGHT(tree, index) = index2, then (<tree>, index2) is the right
** subnode of (<tree>, index).
**
** 'DT_LEFT' returns the left subnode of (<tree>, index). That means if
** DT_LEFT(tree, index) = index2, then (<tree>, index2) is the left
** subnode of (<tree>, index).
**
** Before calling 'DT_RIGHT' or 'DT_LEFT' it should be ensured, that
** (<tree>, index) is not an atom. <index> has to be a positive integer
** less or equal to the number of nodes of <tree>.
*/
#define DT_RIGHT(tree, index) \
( INT_INTOBJ(ELM_PLIST(tree, index*5 + 4) ) + index + 1)
#define DT_LEFT(tree, index) \
( index + 1 )
/****************************************************************************
**
*F DT_SIDE(tree, index) . . . . . . . determine the side of (<tree>, index)
*V RIGHT. . . . . . . . . . . . . . . integer describing "right"
*V LEFT . . . . . . . . . . . . . . . integer describing "left"
**
** 'DT_SIDE' returns 'LEFT' if (<tree>, index) is an atom from the Left-hand
** word, and 'RIGHT' if (<tree>, index) is an atom of the Right-hand word.
** Otherwise 'DT_SIDE' returns an integer bigger than 1. <index> has to be
** a positive integer less or equal to the number of nodes of <tree>.
*/
#define RIGHT -1
#define LEFT -2
#define DT_SIDE(tree, index) \
(INT_INTOBJ( ELM_PLIST(tree, (index-1)*5 + 5 ) ) )
/****************************************************************************
**
*F DT_LENGTH(tree, index) . . . . . . . . number of nodes of (<tree>, index)
**
** 'DT_LENGTH' returns the number of nodes of (<tree>, index). <index> has
** to be a positive integer less or equal to the number of nodes of <tree>.
*/
#define DT_LENGTH(tree, index) \
( INT_INTOBJ(ELM_PLIST(tree, (index-1)*5 + 4) ) )
/***************************************************************************
**
*F DT_MAX(tree, index) . . . . . . . . . . . . . . . . boundary of a node
**
** 'DT_MAX(tree, index)' returns a boundary for 'DT_POS(tree, index)'.
** 'DT_MAX(tree, index) = 0 ' means that 'DT_POS(tree, index)' is unbound.
** <index> has to be a positive integer less or equal to the number of nodes
** of tree.
*/
#define DT_MAX(tree, index) \
(ELM_PLIST(tree, (index-1)*5 + 5 ) )
/****************************************************************************
**
*F CELM(list, pos) . . . . . . . . . . element of a plain list as C integer
**
** 'CELM' returns the <pos>-th element of the plain list <list>. <pos> has
** to be a positive integer less or equal to the physical length of <list>.
** Before calling 'CELM' it should be ensured that the <pos>-th entry of
** <list> is an immediate integer object.
*/
#define CELM(list, pos) ( INT_INTOBJ(ELM_PLIST(list, pos) ) )
/****************************************************************************
**
*V Dt_add
**
** Dt_add is used to store the library function dt_add.
*/
static Obj Dt_add;
/****************************************************************************
**
*F UnmarkTree( <tree> ) . . . . . . . remove the marks of all nodes of <tree>
**
** 'UnmarkTree' removes all marks of all nodes of the tree <tree>.
*/
static void UnmarkTree(Obj tree)
{
UInt i, len; // loop variable
len = DT_LENGTH(tree, 1);
for (i=1; i <= len; i++ )
DT_UNMARK(tree, i);
}
/****************************************************************************
**
*F FuncUnmarkTree(<self>, <tree>) . . remove the marks of all nodes of <tree>
**
** 'FuncUnmarkTree' implements the internal function 'UnmarkTree'.
**
** 'UnmarkTree( <tree> )'
**
** 'UnmarkTree' removes all marks of all nodes of the tree <tree>.
*/
static Obj FuncUnmarkTree(Obj self, Obj tree)
{
UnmarkTree(tree);
return 0;
}
/*****************************************************************************
**
*F Mark(<tree>, <reftree>, <index>) . . . . . . . . find all nodes of <tree>
** which are almost equal
** to (<reftree>, index)
**
** 'Mark' determines all nodes of the tree <tree>, rooting subtrees almost
** equal to the tree rooted at (<reftree>, index). 'Mark' marks these nodes
** and returns the number of different nodes among these nodes. Since it
** is assumed that the set {pos(a) | a almost equal to (<reftree>, index) }
** is equal to {1,...,n} for a positive integer n, 'Mark' actually returns
** the Maximum of {pos(a) | a almost equal to (<reftree>, index)}.
*/
static UInt Mark(Obj tree, Obj reftree, Int indexx)
{
UInt i, // loop variable
m, // integer to return
len;
Obj refgen;
m = 0;
i = 1;
len = DT_LENGTH(tree, 1);
refgen = DT_GEN(reftree, indexx);
while ( i <= len )
{
/* skip all nodes (<tree>, i) with
** num(<tree>, i) > num(<reftree>, indexx) */
while( i < len &&
DT_GEN(tree, i) > refgen )
i++;
if ( AlmostEqual(tree, i, reftree, indexx) )
{
DT_MARK(tree, i);
if ( m < INT_INTOBJ( DT_POS(tree, i) ) )
m = INT_INTOBJ( DT_POS(tree, i) );
}
/* Since num(a) < num(b) holds for all subtrees <a> of an arbitrary
** tree <b> we can now skip the whole tree rooted at (<tree>, i).
** If (<tree>, i) is the left subnode of another node we can even
** skip the tree rooted at that node, because of
** num( right(a) ) < num( left(a) ) for all trees <a>.
** Note that (<tree>, i) is the left subnode of another node, if and
** only if the previous node (<tree>, i-1) is not an atom. in this
** case (<tree>, i) is the left subnode of (<tree>, i-1). */
if ( DT_LENGTH(tree, i-1) == 1 )
// skip the tree rooted at (<tree>, i).
i = i + DT_LENGTH(tree, i);
else
// skip the tree rooted at (<tree>, i-1)
i = i - 1 + DT_LENGTH(tree, i-1);
}
return m;
}
/****************************************************************************
**
*F AmostEqual(<tree1>,<index1>,<tree2>,<index2>) . . test of almost equality
**
** 'AlmostEqual' tests if tree(<tree1>, index1) is almost equal to
** tree(<tree2>, index2). 'AlmostEqual' returns 1
** if these trees are almost equal, and 0 otherwise. <index1> has to be
** a positive integer less or equal to the number of nodes of <tree1>,
** and <index2> has to be a positive integer less or equal to the number of
** nodes of <tree2>.
*/
static Int AlmostEqual(Obj tree1, Int index1, Obj tree2, Int index2)
{
UInt k, schranke; // loop variable
/* First the two top nodes of tree(<tree1>, index1) and
** tree(<tree2>, index2) (that are (<tree1>, index1) and
** (<tree2, index2) ) are compared by testing the equality of the 2-nd,
** 5-th and 6-th entries the nodes. */
if ( DT_GEN(tree1, index1) != DT_GEN(tree2, index2) )
return 0;
if ( DT_SIDE(tree1, index1) != DT_SIDE(tree2, index2) )
return 0;
if ( DT_LENGTH(tree1, index1) != DT_LENGTH(tree2, index2) )
return 0;
/* For the comparison of the remaining nodes of tree(<tree1>, index1)
** and tree(<tree2>, index2) it is also necessary to compare the first
** entries of the nodes. Note that we know at this point, that
** tree(<tree1>, index1) and tree(<tree2>, index2) have the same number
** of nodes */
schranke = index1 + DT_LENGTH(tree1, index1);
for (k = index1 + 1; k < schranke; k++ )
{
if ( DT_GEN(tree1, k) != DT_GEN(tree2, k + index2 - index1 ) )
return 0;
if ( DT_POS(tree1, k) != DT_POS(tree2, k + index2 - index1 ) )
return 0;
if ( DT_SIDE(tree1, k) !=
DT_SIDE(tree2, k + index2 - index1) )
return 0;
if ( DT_LENGTH(tree1, k) != DT_LENGTH(tree2, k + index2 - index1) )
return 0;
}
return 1;
}
/*****************************************************************************
**
*F Equal(<tree1>,<index1>,<tree2>,<index2>) . . . . . . . . test of equality
**
** 'Equal' tests if tree(<tree1>, index1) is equal to
** tree(<tree2>, index2). 'Equal' returns 1
** if these trees are equal, and 0 otherwise. <index1> has to be
** a positive integer less or equal to the number of nodes of <tree1>,
** and <index2> has to be a positive integer less or equal to the number of
** nodes of <tree2>.
*/
static Int Equal(Obj tree1, Int index1, Obj tree2, Int index2)
{
UInt k, schranke; // loop variable
/* Each node of tree(<tree1>, index1) is compared to the corresponding
** node of tree(<tree2>, index2) by testing the equality of the 1-st,
** 2-nd, 5-th and 6-th nodes. */
schranke = index1 + DT_LENGTH(tree1, index1);
for (k=index1; k < schranke; k++)
{
if ( DT_GEN(tree1, k) != DT_GEN(tree2, k + index2 - index1 ) )
return 0;
if ( DT_POS(tree1, k) != DT_POS(tree2, k + index2 - index1 ) )
return 0;
if ( DT_SIDE(tree1, k) !=
DT_SIDE(tree2, k + index2 - index1) )
return 0;
if ( DT_LENGTH(tree1, k) != DT_LENGTH(tree2, k + index2 - index1) )
return 0;
}
return 1;
}
/****************************************************************************
**
*F Mark2(<tree>,<index1>,<reftree>,<index2>) . . find all subtrees of
** tree(<tree>, index1) which
** are almost equal to
** tree(<reftree>, index2)
**
** 'Mark2' determines all subtrees of tree(<tree>, index1) that are almost
** equal to tree(<reftree>, index2). 'Mark2' marks the top nodes of these
** trees and returns a list of lists <list> such that <list>[i]
** for each subtree <a> of <tree> which is almost equal to
** tree(<reftree>, index2) and for which pos(<a>) = i holds contains an
** integer describing the position of the top node of <a> in <tree>.
** For example <list>[i] = [j, k] means that tree(<tree>, j) and
** tree(<tree>, k) are almost equal to tree(<reftree>, index2) and
** that pos(tree(<tree>, j) = pos(tree(<tree>, k) = i holds.
**
** <index1> has to be a positive integer less or equal to the number of nodes
** of <tree>, and <index2> has to be a positive integer less or equal to
** the number of nodes of <reftree>.
*/
static Obj Mark2(Obj tree, Int index1, Obj reftree, Int index2)
{
UInt i, // loop variable
len;
Obj new,
list, // list to return
refgen;
// initialize <list>
list = NEW_PLIST(T_PLIST, 0);
i = index1;
len = index1 + DT_LENGTH(tree, index1) - 1;
refgen = DT_GEN(reftree, index2);
while( i <= len )
{
/* skip all nodes (<tree>, i) with
** num(<tree>, i) > num(<reftree>, index) */
while( i < len &&
DT_GEN(tree, i) > refgen )
i++;
if ( AlmostEqual(tree, i, reftree, index2) )
{
DT_MARK(tree, i);
// if <list> is too small grow it appropriately
if ( LEN_PLIST(list) < INT_INTOBJ( DT_POS(tree, i) ) )
{
GROW_PLIST(list, INT_INTOBJ( DT_POS(tree, i) ) );
SET_LEN_PLIST(list, INT_INTOBJ( DT_POS(tree, i) ) );
}
/* if <list> has no entry at position pos(tree(<tree>, i))
** create a new list <new>, assign it to list at position
** pos(tree(<tree>, i)), and add i to <new> */
if ( ELM_PLIST(list, INT_INTOBJ( DT_POS(tree, i) ) ) == 0)
{
new = NewPlistFromArgs(INTOBJ_INT(i));
SET_ELM_PLIST(list, INT_INTOBJ( DT_POS(tree, i) ), new);
// tell gasman that list has changed
CHANGED_BAG(list);
}
// add i to <list>[ pos(tree(<tree>, i)) ]
else
{
new = ELM_PLIST(list, INT_INTOBJ( DT_POS(tree, i) ) );
PushPlist(new, INTOBJ_INT(i) );
}
}
/* Since num(a) < num(b) holds for all subtrees <a> of an arbitrary
** tree <b> we can now skip the whole tree rooted at (<tree>, i).
** If (<tree>, i) is the left subnode of another node we can even
** skip the tree rooted at that node, because of
** num( right(a) ) < num( left(a) ) for all trees <a>.
** Note that (<tree>, i) is the left subnode of another node, if and
** only if the previous node (<tree>, i-1) is not an atom. In this
** case (<tree>, i) is the left subnode of (<tree>, i-1). */
if ( DT_LENGTH(tree, i-1) == 1 )
// skip tree(<tree>, i)
i = i + DT_LENGTH(tree, i);
else
// skip tree(<tree>, i-1)
i = i - 1 + DT_LENGTH(tree, i-1);
}
return list;
}
/*****************************************************************************
**
*F FindTree(<tree>, <index>)
**
** 'FindTree' looks for a subtree <a> of tree(<tree>, index) such that
** the top node of
** <a> is not marked but all the other nodes of <a> are marked. It is
** assumed that if the top node of a subtree <b> of tree(<tree>, index)
** is marked, all
** nodes of <b> are marked. Hence it suffices to look for a subtree <a>
** of <tree> such that the top node of <a> is unmarked and the left and the
** right node of <a> are marked. 'FindTree' returns an integer <i> such
** that tree(<tree> ,i) has the properties mentioned above. If such a tree
** does not exist 'Findtree' returns 0 (as C integer). Note that this holds
** if and only if tree(<tree>, index) is marked.
*/
static UInt FindTree(Obj tree, Int indexx)
{
UInt i; // loop variable
// return 0 if (<tree>, indexx) is marked
if ( DT_IS_MARKED(tree, indexx) )
return 0;
i = indexx;
/* loop over all nodes of tree(<tree>, indexx) to find a tree with the
** properties described above. */
while( i < indexx + DT_LENGTH(tree, indexx) )
{
// skip all nodes that are unmarked and rooting non-atoms
while( !( DT_IS_MARKED(tree, i) ) && DT_LENGTH(tree, i) > 1 )
i++;
/* if (<tree>, i) is unmarked we now know that tree(<tree>, i) is
** an atom and we can return i. Note that an unmarked atom has the
** desired properties. */
if ( !( DT_IS_MARKED(tree, i) ) )
return i;
// go to the previous node
i--;
/* If the right node of tree(<tree>, i) is marked return i.
** Else go to the right node of tree(<tree>, i). */
if ( DT_IS_MARKED(tree, DT_RIGHT(tree, i) ) )
return i;
i = DT_RIGHT(tree, i);
}
return 0;
}
/****************************************************************************
**
*F MakeFormulaVector(<tree>, <pr>) . . . . . . . . . compute the polynomial
** g_<tree> for <tree>
**
** 'MakeFormulaVector' returns the polynomial g_<tree> for a tree <tree>
** and a pc-presentation <pr> of a nilpotent group. This polynomial g_<tree>
** is a product of binomial coefficients with a coefficient c ( see the
** header of this file ).
**
** For the calculation of the coefficient c the top node of <tree> is ignored
** because it can happen that trees are equal except for the top node.
** Hence it suffices to compute the formula vector for one of these trees.
** Then we get the "correct" coefficient for the polynomial for each <tree'>
** of those trees by multiplying the coefficient given by the formula vector
** with c_( num(left(<tree'>)), num(right(<tree'>)); num(<tree'>) ). This
** is also the reason for storing num(left(<tree>)) and num(right(<tree>))
** in the formula vector.
**
** 'MakeFormulaVector' only returns correct results if all nodes of <tree>
** are unmarked.
*/
static Obj MakeFormulaVector(Obj tree, Obj pr)
{
UInt i, // denominator of a binomial coefficient
j, // loop variable
u; // node index
Obj rel, // stores relations of <pr>
vec, // stores formula vector to return
prod,// stores the product of two integers
gen;
// initialize <vec> and set the first four elements
vec = NewPlistFromArgs(INTOBJ_INT(0), INTOBJ_INT(1),
DT_GEN(tree, DT_LEFT(tree, 1)),
DT_GEN(tree, DT_RIGHT(tree, 1)));
/* loop over all almost equal classes of subtrees of <tree> except for
** <tree> itself. */
u = FindTree(tree, 1);
while( u > 1 )
{
/* mark all subtrees of <tree> almost equal to tree(<tree>, u) and
** get the number of different trees in this almost equal class */
i = Mark(tree, tree, u);
/* if tree(<tree>, u) is an atom from the Right-hand word append
** [ 0, i ] to <vec> */
if ( DT_SIDE(tree, u) == RIGHT )
{
GROW_PLIST(vec, LEN_PLIST(vec)+2);
SET_LEN_PLIST(vec, LEN_PLIST(vec)+2);
SET_ELM_PLIST(vec, LEN_PLIST(vec)-1, INTOBJ_INT(0) );
SET_ELM_PLIST(vec, LEN_PLIST(vec), INTOBJ_INT(i) );
}
/* if tree(<tree>, u) is an atom from the Left-hand word append
** [ num(tree(<tree>, u)), i ] to <vec> */
else if ( DT_SIDE(tree, u) == LEFT)
{
GROW_PLIST(vec, LEN_PLIST(vec)+2);
SET_LEN_PLIST(vec, LEN_PLIST(vec)+2);
SET_ELM_PLIST(vec, LEN_PLIST(vec)-1, DT_GEN(tree, u) );
SET_ELM_PLIST(vec, LEN_PLIST(vec), INTOBJ_INT(i) );
}
/* if tree(<tree>, u) is not an atom multiply
** <vec>[2] with binomial(d, i) where
** d = c_(num(left(<tree>,u)), num(right(<tree>,u)); num(<tree>,u)) */
else
{
j = 3;
rel = ELM_PLIST( ELM_PLIST(pr, INT_INTOBJ( DT_GEN(tree,
DT_LEFT(tree, u) ) ) ),
INT_INTOBJ( DT_GEN(tree, DT_RIGHT(tree, u) ) ) );
gen = DT_GEN(tree, u);
while ( 1 )
{
if ( ELM_PLIST(rel, j) == gen )
{
prod = ProdInt(ELM_PLIST(vec, 2),
BinomialInt(ELM_PLIST(rel, j+1),
INTOBJ_INT(i) ) );
SET_ELM_PLIST(vec, 2, prod);
// tell gasman that vec has changed
CHANGED_BAG(vec);
break;
}
j+=2;
}
}
u = FindTree(tree, 1);
}
return vec;
}
/**************************************************************************
**
*F FuncMakeFormulaVector(<self>,<tree>,<pr>) . . . . . compute the formula
** vector for <tree>
**
** 'FuncMakeFormulaVector' implements the internal function
** 'MakeFormulaVector(<tree>, <pr>)'.
**
** 'MakeFormulaVector(<tree>, <pr>)'
**
** 'MakeFormulaVector' returns the formula vector for the tree <tree> and
** the pc-presentation <pr>.
*/
static Obj FuncMakeFormulaVector(Obj self, Obj tree, Obj pr)
{
if (LEN_PLIST(tree) == 5)
ErrorMayQuit("<tree> has to be a non-atom", 0, 0);
return MakeFormulaVector(tree, pr);
}
/****************************************************************************
**
*F Leftof(<tree1>,<index1>,<tree2>,<index2>) . . . . test if one tree is left
** of another tree
**
** 'Leftof' returns 1 if tree(<tree1>, index1) is left of tree(<tree2>,index2)
** in the word being collected at the first instance, that
** tree(<tree1>, index1) and tree(<tree2>, index2) both occur. It is assumed
** that tree(<tree1>, index1) is not equal to tree(<tree2>, index2).
*/
static Int Leftof(Obj tree1, Int index1, Obj tree2, Int index2)
{
if ( DT_LENGTH(tree1, index1) == 1 && DT_LENGTH(tree2, index2) == 1 ) {
if (DT_SIDE(tree1, index1) == LEFT && DT_SIDE(tree2, index2) == RIGHT)
return 1;
else if (DT_SIDE(tree1, index1) == RIGHT &&
DT_SIDE(tree2, index2) == LEFT )
return 0;
else if (DT_GEN(tree1, index1) == DT_GEN(tree2, index2) )
return ( DT_POS(tree1, index1) < DT_POS(tree2, index2) );
else
return ( DT_GEN(tree1, index1) < DT_GEN(tree2, index2) );
}
if ( DT_LENGTH(tree1, index1) > 1 &&
DT_LENGTH(tree2, index2) > 1 &&
Equal( tree1, DT_RIGHT(tree1, index1) ,
tree2, DT_RIGHT(tree2, index2) ) )
{
if ( Equal( tree1, DT_LEFT(tree1, index1),
tree2, DT_LEFT(tree2, index2) ) ) {
if ( DT_GEN(tree1, index1) == DT_GEN(tree2, index2) )
return ( DT_POS(tree1, index1) < DT_POS(tree2, index2) );
else
return ( DT_GEN(tree1, index1) < DT_GEN(tree2, index2) );
}
}
if( Earlier(tree1, index1, tree2, index2) )
return !Leftof2( tree2, index2, tree1, index1);
else
return Leftof2( tree1, index1, tree2, index2);
}
/*****************************************************************************
**
*F Leftof2(<tree1>,<index1>,<tree2>,<index2>) . . . . . test if one tree is
** left of another tree
**
** 'Leftof2' returns 1 if tree(<tree1>, index1) is left of
** tree(<tree2>,index2)in the word being collected at the first instance,
** that tree(<tree1>, index1) and tree(<tree2>, index2) both occur. It is
** assumed that tree(<tree2>, index2) occurs earlier than
** tree(<tree1>,index1). Furthermore it is assumed that if both
** tree(<tree1>, index1) and tree(<tree2>, index2) are non-atoms, then their
** right trees and their left trees are not equal.
*/
static Int Leftof2(Obj tree1, Int index1, Obj tree2, Int index2)
{
if ( DT_GEN(tree2, index2) < DT_GEN(tree1, DT_RIGHT(tree1, index1) ) )
return 0;
else if (Equal(tree1, DT_RIGHT(tree1, index1), tree2, index2 ) )
return 0;
else if (DT_GEN(tree2, index2) == DT_GEN(tree1, DT_RIGHT(tree1, index1)) )
return Leftof(tree1, DT_RIGHT(tree1, index1), tree2, index2 );
else if (Equal(tree1, DT_LEFT(tree1, index1), tree2, index2) )
return 0;
else
return Leftof(tree1, DT_LEFT(tree1, index1), tree2, index2);
}
/****************************************************************************
**
*F Earlier(<tree1>,<index1>,<tree2>,<index2>) . . . test if one tree occurs
** earlier than another
**
** 'Earlier' returns 1 if tree(<tree1>, index1) occurs strictly earlier than
** tree(<tree2>, index2). It is assumed that at least one of these trees
** is a non-atom. Furthermore it is assumed that if both of these trees are
** non-atoms, right(tree(<tree1>, index1) ) does not equal
** right(tree(<tree2>, index2) ) or left(tree(<tree1>, index1) ) does not
** equal left(tree(<tree2>, index2) ).
*/
static Int Earlier(Obj tree1, Int index1, Obj tree2, Int index2)
{
if ( DT_LENGTH(tree1, index1) == 1 )
return 1;
if ( DT_LENGTH(tree2, index2) == 1 )
return 0;
if ( Equal(tree1, DT_RIGHT(tree1, index1),
tree2, DT_RIGHT(tree2, index2) ) )
return Leftof(tree1, DT_LEFT(tree2, index2),
tree2, DT_LEFT(tree1, index1) );
if ( DT_GEN(tree1, DT_RIGHT(tree1, index1) ) ==
DT_GEN(tree2, DT_RIGHT(tree2, index2) ) )
return Leftof( tree1, DT_RIGHT(tree1, index1) ,
tree2, DT_RIGHT(tree2, index2) );
return (DT_GEN(tree1, DT_RIGHT(tree1, index1) ) <
DT_GEN(tree2, DT_RIGHT(tree2, index2) ) );
}
/****************************************************************************
**
** GetPols( <list>, <pr>, <pols> )
**
** GetPols computes all representatives which are represented by the
** pseudorepresentative <list>, converts them all into the corresponding
** deep thought monomial and stores all these monomials in the list <pols>.
*/
// See below:
static void GetReps(Obj list, Obj reps);
static void FindNewReps2(Obj tree, Obj reps, Obj pr);
static void GetPols(Obj list, Obj pr, Obj pols)
{
Obj lreps,
rreps,
tree,
tree1;
UInt i,j,k,l, lenr, lenl, len;
lreps = NEW_PLIST(T_PLIST, 2);
rreps = NEW_PLIST(T_PLIST, 2);
/* get the representatives that are represented by <list>[1] and those
** which are represented by <list>[2]. */
GetReps( ELM_PLIST(list, 1), lreps );
GetReps( ELM_PLIST(list, 2), rreps );
lenr = LEN_PLIST(rreps);
lenl = LEN_PLIST(lreps);
for (i=1; i<=lenl; i++)
for (j=1; j<=lenr; j++)
{
/* now get all representatives, which can be constructed from
** <lreps>[<i>] and <rreps>[<j>] and add the corresponding
** deep thought monomials to <pols> */
k = LEN_PLIST( ELM_PLIST(lreps, i) )
+ LEN_PLIST( ELM_PLIST(rreps, j) ) + 5;/* m"ogliche Inkom-*/
tree = NEW_PLIST(T_PLIST, k); /* patibilit"at nach*/
SET_LEN_PLIST(tree, k); /*"Anderung der Datenstruktur */
SET_ELM_PLIST(tree, 1, INTOBJ_INT(1) );
SET_ELM_PLIST(tree, 2, ELM_PLIST( list, 3) );
SET_ELM_PLIST(tree, 3, INTOBJ_INT(0) );
SET_ELM_PLIST(tree, 4, INTOBJ_INT((int)(k/5)) );
SET_ELM_PLIST(tree, 5, INTOBJ_INT(0) );
tree1 = ELM_PLIST(lreps, i);
len = LEN_PLIST( tree1 );
for (l=1; l<=len; l++)
SET_ELM_PLIST(tree, l+5, ELM_PLIST(tree1, l) );
k = LEN_PLIST(tree1) + 5;
tree1 = ELM_PLIST(rreps, j);
len = LEN_PLIST( tree1 );
for (l=1; l<=len; l++)
SET_ELM_PLIST(tree, l+k, ELM_PLIST(tree1, l) );
UnmarkTree(tree);
FindNewReps2(tree, pols, pr);
}
}
/****************************************************************************
**
*F FuncGetPols( <self>, <list>, <pr>, <pols> )
**
** FuncGetPols implements the internal function GetPols.
*/
static Obj FuncGetPols(Obj self, Obj list, Obj pr, Obj pols)
{
if (LEN_PLIST(list) != 4)
ErrorMayQuit("<list> must be a generalised representative not a tree",
0, 0);
GetPols(list, pr, pols);
return (Obj) 0;
}
/****************************************************************************
**
*F GetReps( <list>, <reps> )
**
** GetReps computes all representatives which are represented by the
** pseudorepresentative <list> and adds them to the list <reps>.
*/
// See below:
static void FindNewReps1(Obj tree, Obj reps);
static void GetReps(Obj list, Obj reps)
{
Obj lreps,
rreps,
tree,
tree1;
UInt i,j,k,l, lenr, lenl, len;;
if ( LEN_PLIST(list) != 4 )
{
SET_ELM_PLIST(reps, 1, list);
SET_LEN_PLIST(reps, 1);
return;
}
lreps = NEW_PLIST(T_PLIST, 2);
rreps = NEW_PLIST(T_PLIST, 2);
/* now get all representatives which are represented by <list>[1] and
** all representatives which are represented by <list>[2]. */
GetReps( ELM_PLIST(list, 1), lreps );
GetReps( ELM_PLIST(list, 2), rreps );
lenl = LEN_PLIST( lreps );
lenr = LEN_PLIST( rreps );
for (i=1; i<=lenl; i++)
for (j=1; j<=lenr; j++)
{
/* compute all representatives which can be constructed from
** <lreps>[<i>] and <rreps>[<j>] and add them to <reps>. */
k = LEN_PLIST( ELM_PLIST(lreps, i) )
+ LEN_PLIST( ELM_PLIST(rreps, j) ) + 5;/* m"ogliche Inkom-*/
tree = NEW_PLIST(T_PLIST, k); /* patibilit"at nach*/
SET_LEN_PLIST(tree, k); /*"Anderung der Datenstruktur */
SET_ELM_PLIST(tree, 1, INTOBJ_INT(1) );
SET_ELM_PLIST(tree, 2, ELM_PLIST( list, 3) );
SET_ELM_PLIST(tree, 3, INTOBJ_INT(0) );
SET_ELM_PLIST(tree, 4, INTOBJ_INT((int)(k/5)) );
if ( IS_INTOBJ( ELM_PLIST(list, 4) ) &&
CELM(list, 4) < 100 && CELM(list, 4) > 0 )
SET_ELM_PLIST(tree, 5, ELM_PLIST(list, 4) );
else
SET_ELM_PLIST(tree, 5, INTOBJ_INT(0) );
tree1 = ELM_PLIST(lreps, i);
len = LEN_PLIST( tree1 );
for (l=1; l<=len; l++)
SET_ELM_PLIST(tree, l+5, ELM_PLIST(tree1, l) );
k = LEN_PLIST(tree1) + 5;
tree1 = ELM_PLIST(rreps, j);
len = LEN_PLIST( tree1 );
for (l=1; l<=len; l++)
SET_ELM_PLIST(tree, l+k, ELM_PLIST(tree1, l) );
UnmarkTree(tree);
FindNewReps1(tree, reps);
}
}
/**************************************************************************
**
*F FindNewReps(<tree>,<reps>,<pr>,<max>) . . construct new representatives
**
** 'FindNewReps' constructs all trees <tree'> with the following properties.
** 1) left(<tree'>) is equivalent to left(<tree>).
** right(<tree'>) is equivalent to right(<tree>).
** num(<tree'>) = num(<tree>)
** 2) <tree'> is the least tree in its equivalence class.
** 3) for each marked node of (<tree>, i) of <tree> tree(<tree>, i) is equal
** to tree(<tree'>, i).
** There are three versions of FindNewReps. FindNewReps1 adds all found
** trees to the list <reps>. This version is called by GetReps.
** FindNewReps2 computes for each found tree the corresponding deep thought
** monomial adds these deep thought monomials to <reps>. This version
** is called from GetPols.
** The third version FindNewReps finally assumes that <reps> is the list of
** pseudorepresentatives. This Version adds all found trees to <reps> and
** additionally all trees, that fulfill 1), 2) and 3) except for
** num(<tree'>) = num(<tree>). This version is called from the library
** function calrepsn.
** It is assumed that both left(<tree>) and right(<tree>) are the least
** elements in their equivalence class.
*/
// See below:
static void FindSubs1(Obj tree,
Int x,
Obj list1,
Obj list2,
Obj a,
Obj b,
Int al,
Int ar,
Int bl,
Int br,
Obj reps);
static void FindNewReps1(Obj tree, Obj reps)
{
Obj y, // stores a copy of <tree>
lsubs, /* stores pos(<subtree>) for all subtrees of
** left(<tree>) in a given almost equal class */
rsubs, /* stores pos(<subtree>) for all subtrees of
** right(<tree>) in the same almost equal class */
llist, /* stores all elements of an almost equal class
** of subtrees of left(<tree>) */
rlist; /* stores all elements of the same almost equal
** class of subtrees of right(<tree>) */
Int a, // stores a subtree of right((<tree>)
n, // Length of lsubs
m, // Length of rsubs
i; // loop variable
/* get a subtree of right(<tree>) which is unmarked but whose
** subtrees are all marked */
a = FindTree(tree, DT_RIGHT(tree, 1) );
/* If we do not find such a tree we at the bottom of the recursion.
** If leftof(left(<tree>), right(<tree>) ) holds we add all <tree>
** to <reps>. */
if ( a == 0 )
{
if ( Leftof(tree, DT_LEFT(tree, 1), tree, DT_RIGHT(tree, 1) ) )
{
y = ShallowCopyPlist(tree);
AssPlist(reps, LEN_PLIST(reps) + 1, y);
}
return;
}
/* get all subtrees of left(<tree>) which are almost equal to
** tree(<tree>, a) and mark them */
llist = Mark2(tree, DT_LEFT(tree, 1), tree, a);
/* get all subtrees of right(<tree>) which are almost equal to
** tree(<tree>, a) and mark them */
rlist = Mark2(tree, DT_RIGHT(tree, 1), tree, a);
n = LEN_PLIST(llist);
m = LEN_PLIST(rlist);
/* if no subtrees of left(<tree>) almost equal to
** tree(<tree>, a) have been found there is no possibility
** to change the pos-argument in the trees stored in llist and
** rlist, so call FindNewReps without changing any pos-arguments.