forked from gap-system/gap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ariths.h
628 lines (503 loc) · 17.9 KB
/
ariths.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
/****************************************************************************
**
** This file is part of GAP, a system for computational discrete algebra.
**
** Copyright of GAP belongs to its developers, whose names are too numerous
** to list here. Please refer to the COPYRIGHT file for details.
**
** SPDX-License-Identifier: GPL-2.0-or-later
**
** This file declares the functions of the arithmetic operations package.
*/
#ifndef GAP_ARITHS_H
#define GAP_ARITHS_H
#include "objects.h"
/****************************************************************************
**
*T CompaMethod . . . . . . . . . . type of methods for comparison operations
**
** 'CompaMethod' is the type of methods for comparison operations, i.e., a
** function accepting two arguments of type 'Obj' and returning an 'Int'.
*/
typedef Int (* CompaMethod) ( Obj opL, Obj opR );
/****************************************************************************
**
*T ArithMethod1 . . . . . . . . . type of methods for arithmetic operations
**
** 'ArithMethod1' is the type of methods for unary arithmetic operations,
** i.e., a function accepting one argument of type 'Obj' and returning an
** 'Obj'.
*/
typedef Obj (* ArithMethod1) ( Obj op );
/****************************************************************************
**
*T ArithMethod2 . . . . . . . . . type of methods for arithmetic operations
**
** 'ArithMethod2' is the type of methods for binary arithmetic operations,
** i.e., a function accepting two arguments of type 'Obj' and returning an
** 'Obj'.
*/
typedef Obj (* ArithMethod2) ( Obj opL, Obj opR );
/****************************************************************************
**
*F * * * * * * * * * * * unary arithmetic operations * * * * * * * * * * * *
*/
/****************************************************************************
**
*V ZeroSameMutFuncs[<type>] . . . . . . . . . . . . . .table of zero methods
*/
extern ArithMethod1 ZeroSameMutFuncs[LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F ZERO_SAMEMUT( <op> ) . . . . . . . zero of an object retaining mutability
**
** 'ZERO_SAMEMUT' returns the zero of the object <op> with the same
** mutability level as <op>
*/
EXPORT_INLINE Obj ZERO_SAMEMUT(Obj op)
{
UInt tnum = TNUM_OBJ(op);
return (*ZeroSameMutFuncs[tnum])(op);
}
/****************************************************************************
**
*V ZeroMutFuncs[<type>] . . . . . . . . . . . . . . . table of zero methods
*/
extern ArithMethod1 ZeroMutFuncs[LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F ZERO_MUT( <op> ) . . . . . . . . . . . . . . . . . . . zero of an object
**
** 'ZERO_MUT' returns the mutable zero of the object <op>.
*/
EXPORT_INLINE Obj ZERO_MUT(Obj op)
{
UInt tnum = TNUM_OBJ(op);
return (*ZeroMutFuncs[tnum])(op);
}
/****************************************************************************
**
*V AInvSameMutFuncs[<type>] . . . . . . . table of additive inverse methods
*/
extern ArithMethod1 AInvSameMutFuncs[LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F AINV_SAMEMUT( <op> ) . . . . . . . . . . . . additive inverse of an object
**
** 'AINV_SAMEMUT' returns the additive inverse of the object <op> with the
** same mutability level as <op>
*/
EXPORT_INLINE Obj AINV_SAMEMUT(Obj op)
{
UInt tnum = TNUM_OBJ(op);
return (*AInvSameMutFuncs[tnum])(op);
}
/****************************************************************************
**
*V AInvMutFuncs[<type>] . . . . . . . . . table of additive inverse methods
*/
extern ArithMethod1 AInvMutFuncs[LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F AINV_MUT( <op> ) . . . . . . . . . . . . . additive inverse of an object
**
** 'AINV_MUT' returns the mutable additive inverse of the object <op>.
*/
EXPORT_INLINE Obj AINV_MUT(Obj op)
{
UInt tnum = TNUM_OBJ(op);
return (*AInvMutFuncs[tnum])(op);
}
/****************************************************************************
**
*F C_AINV( <val>, <left> ) . . . . . . . . . . . . . . . . . . compute ainv
*/
#define C_AINV(val,left) \
val = AINV_MUT( left );
/****************************************************************************
**
*F C_AINV_FIA( <val>, <left> ) . . . . . . . . . compute ainv, fast integer
*/
#define C_AINV_FIA(val,left) \
val = AINV_MUT( left );
/****************************************************************************
**
*F C_AINV_INTOBJS( <val>, <left> ) . . . . . . . compute ainv of an integer
*/
#define C_AINV_INTOBJS(val,left) \
val = AINV_MUT( left );
/****************************************************************************
**
*V OneFuncs[<type>] . . . . . . . . . . . . . . . . . table of one methods
*/
extern ArithMethod1 OneFuncs[LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F ONE( <op> ) . . . . . . . . . . . . . . . . . . . . . . one of an object
**
** 'ONE' returns the one of the object <op>.
*/
EXPORT_INLINE Obj ONE(Obj op)
{
UInt tnum = TNUM_OBJ(op);
return (*OneFuncs[tnum])(op);
}
/****************************************************************************
**
*V OneSameMut[<type>] . . . . . . table of mutability preserving one methods
*/
extern ArithMethod1 OneSameMut[LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F ONE_SAMEMUT( <op> ) . . . . . . . . one of an object retaining mutability
**
** 'ONE_SAMEMUT' returns the one of the object <op> with the same
** mutability level as <op>.
*/
EXPORT_INLINE Obj ONE_SAMEMUT(Obj op)
{
UInt tnum = TNUM_OBJ(op);
return (*OneSameMut[tnum])(op);
}
/****************************************************************************
**
*V InvFuncs[<type>] . . . . . . . . . . . . . . table of inverse functions
*/
extern ArithMethod1 InvFuncs[LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F INV( <op> ) . . . . . . . . . . . . . . . . . . . . inverse of an object
**
** 'INV' returns the multiplicative inverse of the object <op>.
*/
EXPORT_INLINE Obj INV(Obj op)
{
UInt tnum = TNUM_OBJ(op);
return (*InvFuncs[tnum])(op);
}
/****************************************************************************
**
*V InvSameMutFuncs[<type>] table of mutability preserving inverse functions
*/
extern ArithMethod1 InvSameMutFuncs[LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F INV_SAMEMUT( <op> ) . . . . . . inverse of an object retaining mutability
**
** 'INV_SAMEMUT' returns the multiplicative inverse of the object <op> with
** the same mutability level as <op>.
*/
EXPORT_INLINE Obj INV_SAMEMUT(Obj op)
{
UInt tnum = TNUM_OBJ(op);
return (*InvSameMutFuncs[tnum])(op);
}
/****************************************************************************
**
*F * * * * * * * * * * * * * comparison operations * * * * * * * * * * * * *
*/
/****************************************************************************
**
*V EqFuncs[<typeL>][<typeR>] . . . . . . . . . . table of comparison methods
*/
extern CompaMethod EqFuncs[LAST_REAL_TNUM + 1][LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F EQ( <opL>, <opR> ) . . . . . . . . . . . . . . comparison of two objects
**
** 'EQ' returns a nonzero value if the object <opL> is equal to the object
** <opR>, and zero otherwise.
*/
EXPORT_INLINE Int EQ(Obj opL, Obj opR)
{
if (opL == opR)
return 1;
if (ARE_INTOBJS(opL, opR))
return 0;
UInt tnumL = TNUM_OBJ(opL);
UInt tnumR = TNUM_OBJ(opR);
return (*EqFuncs[tnumL][tnumR])(opL, opR);
}
extern Obj EqOper;
Int EqObject(Obj opL, Obj opR);
/****************************************************************************
**
*V LtFuncs[<typeL>][<typeR>] . . . . . . . . . . table of comparison methods
*/
extern CompaMethod LtFuncs[LAST_REAL_TNUM + 1][LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F LT( <opL>, <opR> ) . . . . . . . . . . . . . . comparison of two objects
**
** 'LT' returns a nonzero value if the object <opL> is less than the object
** <opR>, and zero otherwise.
*/
EXPORT_INLINE Int LT(Obj opL, Obj opR)
{
if (opL == opR)
return 0;
if (ARE_INTOBJS(opL, opR))
return (Int)(opL) < (Int)(opR);
UInt tnumL = TNUM_OBJ(opL);
UInt tnumR = TNUM_OBJ(opR);
return (*LtFuncs[tnumL][tnumR])(opL, opR);
}
extern Obj LtOper;
/****************************************************************************
**
*V InFuncs[<typeL>][<typeR>] . . . . . . . . . . table of membership methods
*/
extern CompaMethod InFuncs[LAST_REAL_TNUM + 1][LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F IN( <opL>, <opR> ) . . . . . . . . . . . membership test of two objects
**
** 'IN' returns a nonzero value if the object <opL> is a member of the
** object <opR>, and zero otherwise.
*/
EXPORT_INLINE Int IN(Obj opL, Obj opR)
{
UInt tnumL = TNUM_OBJ(opL);
UInt tnumR = TNUM_OBJ(opR);
return (*InFuncs[tnumL][tnumR])(opL, opR);
}
/****************************************************************************
**
*F * * * * * * * * * * * binary arithmetic operations * * * * * * * * * * * *
*/
/****************************************************************************
**
*V SumFuncs[<typeL>][<typeR>] . . . . . . . . . . . . table of sum methods
*/
extern ArithMethod2 SumFuncs[LAST_REAL_TNUM + 1][LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F SUM( <opL>, <opR> ) . . . . . . . . . . . . . . . . . sum of two objects
**
** 'SUM' returns the sum of the two objects <opL> and <opR>.
**
** At places where performance matters one should use the following code
**
** if ( ! ARE_INTOBJS( <opL>, <opR> )
** || ! SUM_INTOBJS( <res>, <opL>, <opR> ) )
** <res> = SUM( <opL>, <opR> );
*/
EXPORT_INLINE Obj SUM(Obj opL, Obj opR)
{
UInt tnumL = TNUM_OBJ(opL);
UInt tnumR = TNUM_OBJ(opR);
return (*SumFuncs[tnumL][tnumR])(opL, opR);
}
extern Obj SumOper;
/****************************************************************************
**
*F C_SUM( <val>, <left>, <right> ) . . . . . . . . . . . . . . . compute sum
*/
#define C_SUM(val,left,right) \
val = SUM( left, right );
/****************************************************************************
**
*F C_SUM_FIA( <val>, <left>, <right> ) . . . . . compute sum, fast integers
*/
#define C_SUM_FIA(val,left,right) \
if ( ! ARE_INTOBJS(left,right) || ! SUM_INTOBJS(val,left,right) ) { \
val = SUM( left, right ); \
}
/****************************************************************************
**
*F C_SUM_INTOBJS( <val>, <left>, <right> ) . . . compute sum of two integers
*/
#define C_SUM_INTOBJS(val,left,right) \
if ( ! SUM_INTOBJS(val,left,right) ) { \
val = SUM( left, right ); \
}
/****************************************************************************
**
*V DiffFuncs[<typeL>][<typeR>] . . . . . . . . . table of difference methods
*/
extern ArithMethod2 DiffFuncs[LAST_REAL_TNUM + 1][LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F DIFF( <opL>, <opR> ) . . . . . . . . . . . . . difference of two objects
**
** 'DIFF' returns the difference of the two objects <opL> and <opR>.
**
** At places where performance matters one should use the following code
**
** if ( ! ARE_INTOBJS( <opL>, <opR> )
** || ! DIFF_INTOBJS( <res>, <opL>, <opR> ) )
** <res> = DIFF( <opL>, <opR> );
*/
EXPORT_INLINE Obj DIFF(Obj opL, Obj opR)
{
UInt tnumL = TNUM_OBJ(opL);
UInt tnumR = TNUM_OBJ(opR);
return (*DiffFuncs[tnumL][tnumR])(opL, opR);
}
/****************************************************************************
**
*F C_DIFF( <val>, <left>, <right> ) . . . . . . . . . . . . . compute diff
*/
#define C_DIFF(val,left,right) \
val = DIFF( left, right );
/****************************************************************************
**
*F C_DIFF_FIA( <val>, <left>, <right> ) . . . . compute diff, fast integers
*/
#define C_DIFF_FIA(val,left,right) \
if ( ! ARE_INTOBJS(left,right) || ! DIFF_INTOBJS(val,left,right) ) { \
val = DIFF( left, right ); \
}
/****************************************************************************
**
*F C_DIFF_INTOBJS( <val>, <left>, <right> ) . compute diff of two integers
*/
#define C_DIFF_INTOBJS(val,left,right) \
if ( ! DIFF_INTOBJS(val,left,right) ) { \
val = DIFF( left, right ); \
}
/****************************************************************************
**
*V ProdFuncs[<typeL>][<typeR>] . . . . . . . . . . table of product methods
*/
extern ArithMethod2 ProdFuncs[LAST_REAL_TNUM + 1][LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F PROD( <opL>, <opR> ) . . . . . . . . . . . . . . product of two objects
**
** 'PROD' returns the product of the two objects <opL> and <opR>.
**
** At places where performance matters one should use the following code
**
** if ( ! ARE_INTOBJS( <opL>, <opR> )
** || ! PROD_INTOBJS( <res>, <opL>, <opR> ) )
** <res> = PROD( <opL>, <opR> );
*/
EXPORT_INLINE Obj PROD(Obj opL, Obj opR)
{
UInt tnumL = TNUM_OBJ(opL);
UInt tnumR = TNUM_OBJ(opR);
return (*ProdFuncs[tnumL][tnumR])(opL, opR);
}
/****************************************************************************
**
*F C_PROD( <val>, <left>, <right> ) . . . . . . . . . . . . compute product
*/
#define C_PROD(val,left,right) \
val = PROD( left, right );
/****************************************************************************
**
*F C_PROD_FIA( <val>, <left>, <right> ) . . compute product, fast integers
*/
#define C_PROD_FIA(val,left,right) \
if ( ! ARE_INTOBJS(left,right) || ! PROD_INTOBJS(val,left,right) ) { \
val = PROD( left, right ); \
}
/****************************************************************************
**
*F C_PROD_INTOBJS( <val>, <left>, <right> ) compute product of two integers
*/
#define C_PROD_INTOBJS(val,left,right) \
if ( ! PROD_INTOBJS(val,left,right) ) { \
val = PROD( left, right ); \
}
/****************************************************************************
**
*V QuoFuncs[<typeL>][<typeR>] . . . . . . . . . . table of quotient methods
*/
extern ArithMethod2 QuoFuncs[LAST_REAL_TNUM + 1][LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F QUO( <opL>, <opR> ) . . . . . . . . . . . . . . . quotient of two objects
**
** 'QUO' returns the quotient of the object <opL> by the object <opR>.
*/
EXPORT_INLINE Obj QUO(Obj opL, Obj opR)
{
UInt tnumL = TNUM_OBJ(opL);
UInt tnumR = TNUM_OBJ(opR);
return (*QuoFuncs[tnumL][tnumR])(opL, opR);
}
/****************************************************************************
**
*V LQuoFuncs[<typeL>][<typeR>] . . . . . . . table of left quotient methods
*/
extern ArithMethod2 LQuoFuncs[LAST_REAL_TNUM + 1][LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F LQUO( <opL>, <opR> ) . . . . . . . . . . . left quotient of two operand
**
** 'LQUO' returns the left quotient of the object <opL> by the object <opR>.
*/
EXPORT_INLINE Obj LQUO(Obj opL, Obj opR)
{
UInt tnumL = TNUM_OBJ(opL);
UInt tnumR = TNUM_OBJ(opR);
return (*LQuoFuncs[tnumL][tnumR])(opL, opR);
}
/****************************************************************************
**
*V PowFuncs[<typeL>][<typeR>] . . . . . . . . . . . table of power methods
*/
extern ArithMethod2 PowFuncs[LAST_REAL_TNUM + 1][LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F POW( <opL>, <opR> ) . . . . . . . . . . . . . . . . power of two objects
**
** 'POW' returns the power of the object <opL> by the object <opL>.
*/
EXPORT_INLINE Obj POW(Obj opL, Obj opR)
{
UInt tnumL = TNUM_OBJ(opL);
UInt tnumR = TNUM_OBJ(opR);
return (*PowFuncs[tnumL][tnumR])(opL, opR);
}
/****************************************************************************
**
*V CommFuncs[<typeL>][<typeR>] . . . . . . . . . table of commutator methods
*/
extern ArithMethod2 CommFuncs[LAST_REAL_TNUM + 1][LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F COMM( <opL>, <opR> ) . . . . . . . . . . . . . commutator of two objects
**
** 'COMM' returns the commutator of the two objects <opL> and <opR>.
*/
EXPORT_INLINE Obj COMM(Obj opL, Obj opR)
{
UInt tnumL = TNUM_OBJ(opL);
UInt tnumR = TNUM_OBJ(opR);
return (*CommFuncs[tnumL][tnumR])(opL, opR);
}
/****************************************************************************
**
*V ModFuncs[<typeL>][<typeR>] . . . . . . . . . table of remainder methods
*/
extern ArithMethod2 ModFuncs[LAST_REAL_TNUM + 1][LAST_REAL_TNUM + 1];
/****************************************************************************
**
*F MOD( <opL>, <opR> ) . . . . . . . . . . . . . . remainder of two objects
**
** 'MOD' returns the remainder of the object <opL> by the object <opR>.
*/
EXPORT_INLINE Obj MOD(Obj opL, Obj opR)
{
UInt tnumL = TNUM_OBJ(opL);
UInt tnumR = TNUM_OBJ(opR);
return (*ModFuncs[tnumL][tnumR])(opL, opR);
}
/****************************************************************************
**
*F ChangeArithDoOperations( <oper>, <verb> )
*/
void ChangeArithDoOperations(Obj oper, Int verb);
/****************************************************************************
**
*F * * * * * * * * * * * * * initialize module * * * * * * * * * * * * * * *
*/
/****************************************************************************
**
*F InitInfoAriths() . . . . . . . . . . . . . . . . table of init functions
*/
StructInitInfo * InitInfoAriths ( void );
#endif // GAP_ARITHS_H