forked from gap-system/gap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ree.gi
87 lines (78 loc) · 2.47 KB
/
ree.gi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#############################################################################
##
## This file is part of GAP, a system for computational discrete algebra.
##
## Copyright of GAP belongs to its developers, whose names are too numerous
## to list here. Please refer to the COPYRIGHT file for details.
##
## SPDX-License-Identifier: GPL-2.0-or-later
##
#############################################################################
##
#M ReeGroupCons( <IsMatrixGroup>, <q> )
##
InstallMethod(ReeGroupCons,"matrix",true,
[IsMatrixGroup,IsPosInt],0,
function ( filter, q )
local theta, m, f, bas, one, zero, x, h, r, gens, G, i;
m:=Int((LogInt(q,3)-1)/2);
if m<0 or q<>3^(1+2*m) then
Error("Usage: ReeGroup(<filter>,3^(1+2m))");
fi;
theta:=3^m;
f:=GF(q);
bas:=BasisVectors(Basis(f));
one:=One(f);
zero:=Zero(f);
x:=function(t,u,v)
return
[[1,t^theta,-u^theta,(t*u)^theta-v^theta,-u-t^(3*theta+1)-(t*v)^theta,
-v-(u*v)^theta-t^(3*theta+2)-t^theta*u^(2*theta),
t^theta*v-u^(theta+1)+t^(4*theta+2)-v^(2*theta)
-t^(3*theta+1)*u^theta-(t*u*v)^theta],
[0,1,t,u^theta+t^(theta+1),
-t^(2*theta+1)-v^theta,-u^(2*theta)+t^(theta+1)*u^theta+t*v^theta,
v+t*u-t^(2*theta+1)*u^theta-(u*v)^theta-t^(3*theta+2)-t^(theta+1)*v^theta],
[0,0,1,t^theta,-t^(2*theta),v^theta+(t*u)^theta,
u+t^(3*theta+1)-(t*v)^theta-t^(2*theta)*u^theta],
[0,0,0,1,t^theta,u^theta,(t*u)^theta-v^theta],
[0,0,0,0,1,-t,u^theta+t^(theta+1)],
[0,0,0,0,0,1,-t^theta],
[0,0,0,0,0,0,1]]*one;
end;
h:=function(t)
return [[t^theta,0,0,0,0,0,0],
[0,t^(1-theta),0,0,0,0,0],
[0,0,t^(2*theta-1),0,0,0,0],
[0,0,0,1,0,0,0],
[0,0,0,0,t^(1-2*theta),0,0],
[0,0,0,0,0,t^(theta-1),0],
[0,0,0,0,0,0,t^(-theta)]]*one;
end;
r:=[[0,0,0,0,0,0,-1],
[0,0,0,0,0,-1,0],
[0,0,0,0,-1,0,0],
[0,0,0,-1,0,0,0],
[0,0,-1,0,0,0,0],
[0,-1,0,0,0,0,0],
[-1,0,0,0,0,0,0]]*one;
# this generating set is not very good -- there is a 2-generator set. AH
gens:=[];
for i in bas do
Add(gens,x(i,zero,zero));
Add(gens,x(zero,i,zero));
Add(gens,x(zero,zero,i));
od;
Add(gens,h(PrimitiveRoot(f)));
Add(gens,r);
G:=Group(gens,One(gens[1]));
SetName(G,Concatenation("Ree(",String(q),")"));
SetDimensionOfMatrixGroup(G,7);
SetFieldOfMatrixGroup(G,f);
SetIsFinite(G,true);
SetSize(G,q^3*(q-1)*(q^3+1));
SetIsSimpleGroup(G, q > 3);
SetIsPerfectGroup(G, q > 3);
return G;
end );
PermConstructor(ReeGroupCons,[IsPermGroup,IsObject], IsMatrixGroup);