forked from allenhaozhu/SSGC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcitation_pubmed.py
84 lines (71 loc) · 3.06 KB
/
citation_pubmed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import time
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from utils import load_citation, sgc_precompute, set_seed
from models import get_model
from metrics import accuracy
import pickle as pkl
from args_pubmed import get_citation_args
from time import perf_counter
# Arguments
args = get_citation_args()
if args.tuned:
if args.model == "SGC":
with open("{}-tuning/{}.txt".format(args.model, args.dataset), 'rb') as f:
args.weight_decay = pkl.load(f)['weight_decay']
print("using tuned weight decay: {}".format(args.weight_decay))
else:
raise NotImplemented
# setting random seeds
set_seed(args.seed, args.cuda)
adj, features, labels, idx_train, idx_val, idx_test = load_citation(args.dataset, args.normalization, args.cuda)
model = get_model(args.model, features.size(1), labels.max().item()+1, args.hidden, args.dropout, args.cuda)
if args.model == "SGC": features, precompute_time = sgc_precompute(features, adj, args.degree, args.alpha)
print("{:.4f}s".format(precompute_time))
def train_regression(model,
train_features, train_labels,
val_features, val_labels,
epochs=args.epochs, weight_decay=args.weight_decay,
lr=args.lr, dropout=args.dropout):
optimizer = optim.Adam(model.parameters(), lr=lr,
weight_decay=weight_decay)
t = perf_counter()
best_acc_val = torch.zeros((1))
best_loss_val = 100.
best_model = None
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
output = model(train_features)
loss_train = F.cross_entropy(output, train_labels)
loss_train.backward()
optimizer.step()
with torch.no_grad():
model.eval()
output = model(val_features)
acc_val = accuracy(output, val_labels)
loss_val = F.cross_entropy(output, val_labels)
if best_acc_val < acc_val:
best_acc_val = acc_val
# best_model = model
if best_loss_val > loss_val:
best_loss_val = loss_val
best_model = model
train_time = perf_counter()-t
# with torch.no_grad():
# model.eval()
# output = model(val_features)
# acc_val = accuracy(output, val_labels)
return best_model, best_acc_val, train_time
def test_regression(model, test_features, test_labels):
model.eval()
return accuracy(model(test_features), test_labels)
if args.model == "SGC":
model, acc_val, train_time = train_regression(model, features[idx_train], labels[idx_train], features[idx_val], labels[idx_val],
args.epochs, args.weight_decay, args.lr, args.dropout)
acc_test = test_regression(model, features[idx_test], labels[idx_test])
print("Validation Accuracy: {:.4f} Test Accuracy: {:.4f}".format(acc_val, acc_test))
print("Pre-compute time: {:.4f}s, train time: {:.4f}s, total: {:.4f}s".format(precompute_time, train_time, precompute_time+train_time))