TRL is a library to post-train LLMs and diffusion models with methods such as Supervised Fine-tuning (SFT), Proximal Policy Optimization (PPO), and Direct Preference Optimization (DPO).
The library is built on top of 🤗 Transformers and is compatible with any model architecture available there.
Efficient and scalable
:- 🤗 Accelerate is the backbone of TRL that model training to scale from a single GPU to a large scale multi-node cluster with methods such as DDP and DeepSpeed.
PEFT
is fully integrated and allows to train even the largest models on modest hardware with quantisation and methods such as LoRA or QLoRA.- Unsloth is also integrated and allows to significantly speed up training with dedicated kernels.
CLI
: With the CLI you can fine-tune and chat with LLMs without writing any code using a single command and a flexible config system.Trainers
: The trainer classes are an abstraction to apply many fine-tuning methods with ease such as theSFTTrainer
,DPOTrainer
,RewardTrainer
,PPOTrainer
, andORPOTrainer
.AutoModels
: TheAutoModelForCausalLMWithValueHead
&AutoModelForSeq2SeqLMWithValueHead
classes add an additional value head to the model which allows to train them with RL algorithms such as PPO.Examples
: Fine-tune Llama for chat applications or apply full RLHF using adapters etc, following the examples.
Install the library with pip
:
pip install trl
If you want to use the latest features before an official release you can install from source:
pip install git+https://github.com/huggingface/trl.git
If you want to use the examples you can clone the repository with the following command:
git clone https://github.com/huggingface/trl.git
You can use TRL Command Line Interface (CLI) to quickly get started with Supervised Fine-tuning (SFT) and Direct Preference Optimization (DPO), or vibe check your model with the chat CLI:
SFT:
trl sft --model_name_or_path Qwen/Qwen2.5-0.5B --dataset_name trl-lib/Capybara --output_dir Qwen2.5-0.5B-SFT
DPO:
trl dpo --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct --dataset_name argilla/Capybara-Preferences --output_dir Qwen2.5-0.5B-DPO
Chat:
trl chat --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct
Read more about CLI in the relevant documentation section or use --help
for more details.
For more flexibility and control over training, TRL provides dedicated trainer classes to post-train language models or PEFT adapters on a custom dataset. Each trainer in TRL is a light wrapper around the 🤗 Transformers trainer and natively supports distributed training methods like DDP, DeepSpeed ZeRO, and FSDP.
Here is a basic example on how to use the SFTTrainer
:
from trl import SFTConfig, SFTTrainer
from datasets import load_dataset
dataset = load_dataset("trl-lib/Capybara", split="train")
# configure trainer
training_args = SFTConfig(output_dir="Qwen/Qwen2.5-0.5B-SFT")
trainer = SFTTrainer(
args=training_args,
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
)
# train
trainer.train()
Here is a basic example on how to use the RewardTrainer
:
from trl import RewardConfig, RewardTrainer
from trl.extras.dataset_formatting import conversations_formatting_function
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
model = AutoModelForSequenceClassification.from_pretrained(
"Qwen/Qwen2.5-0.5B-Instruct", num_labels=1
)
model.config.pad_token_id = tokenizer.pad_token_id
dataset = load_dataset("trl-lib/Capybara-Preferences", split="train")
def preprocess_function(examples):
new_examples = {
"input_ids_chosen": [],
"attention_mask_chosen": [],
"input_ids_rejected": [],
"attention_mask_rejected": [],
}
for chosen, rejected in zip(examples["chosen"], examples["rejected"]):
tokenized_chosen = tokenizer(chosen)
tokenized_rejected = tokenizer(rejected)
new_examples["input_ids_chosen"].append(tokenized_chosen["input_ids"])
new_examples["attention_mask_chosen"].append(tokenized_chosen["attention_mask"])
new_examples["input_ids_rejected"].append(tokenized_rejected["input_ids"])
new_examples["attention_mask_rejected"].append(
tokenized_rejected["attention_mask"]
)
return new_examples
chosen_fn = conversations_formatting_function(tokenizer, "chosen")
rejected_fn = conversations_formatting_function(tokenizer, "rejected")
dataset = dataset.map(lambda x: {"chosen": chosen_fn(x), "rejected": rejected_fn(x)})
dataset = dataset.map(
preprocess_function,
batched=True,
)
training_args = RewardConfig(
per_device_train_batch_size=2,
remove_unused_columns=False,
output_dir="Qwen2.5-0.5B-Reward",
)
trainer = RewardTrainer(
args=training_args,
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
)
# train
trainer.train()
RLOOTrainer
implements a REINFORCE-style optimization for RLHF that is more performant and memory-efficient than PPO. Here is a basic example of how to use the RLOOTrainer
:
from trl import RLOOConfig, RLOOTrainer, apply_chat_template
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
reward_model = AutoModelForSequenceClassification.from_pretrained(
"Qwen/Qwen2.5-0.5B-Instruct", num_labels=1
)
ref_policy = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
policy = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback-prompt")
dataset = dataset.map(apply_chat_template, fn_kwargs={"tokenizer": tokenizer})
dataset = dataset.map(lambda x: tokenizer(x["prompt"]), remove_columns="prompt")
training_args = RLOOConfig(output_dir="Qwen2.5-0.5B-RL")
trainer = RLOOTrainer(
config=training_args,
tokenizer=tokenizer,
policy=policy,
ref_policy=ref_policy,
reward_model=reward_model,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
)
# train
trainer.train()
DPOTrainer
implements the popular Direct Preference Optimization (DPO) algorithm that was used to post-train Llama 3 and many other models. Here is a basic example on how to use the DPOTrainer
:
# imports
from trl import DPOConfig, DPOTrainer, maybe_extract_prompt, maybe_apply_chat_template
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
# load preference dataset - needs to be in a specific format
dataset = load_dataset("trl-lib/Capybara-Preferences", split="train")
dataset = dataset.map(maybe_extract_prompt)
dataset = dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": tokenizer})
# load trainer
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
trainer = DPOTrainer(
args=training_args,
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
)
# train
trainer.train()
If you want to contribute to trl
or customizing it to your needs make sure to read the contribution guide and make sure you make a dev install:
git clone https://github.com/huggingface/trl.git
cd trl/
make dev
@misc{vonwerra2022trl,
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
title = {TRL: Transformer Reinforcement Learning},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/trl}}
}