diff --git a/README.md b/README.md index fe82af6cf9a2a4..d83ac47d530ad2 100644 --- a/README.md +++ b/README.md @@ -440,6 +440,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. 1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby. +1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. 1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. 1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu. diff --git a/README_es.md b/README_es.md index 3b00361cd684ba..b67ef86b764f8d 100644 --- a/README_es.md +++ b/README_es.md @@ -415,6 +415,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. 1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby. +1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. 1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. 1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu. diff --git a/README_hd.md b/README_hd.md index c5f73b4c59d467..975273f2e99b25 100644 --- a/README_hd.md +++ b/README_hd.md @@ -389,6 +389,7 @@ conda install -c huggingface transformers 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI से) साथ में कागज [विज़न ट्रांसफॉर्मर्स के साथ सिंपल ओपन-वोकैबुलरी ऑब्जेक्ट डिटेक्शन](https:/ /arxiv.org/abs/2205.06230) मैथियास मिंडरर, एलेक्सी ग्रिट्सेंको, ऑस्टिन स्टोन, मैक्सिम न्यूमैन, डिर्क वीसेनबोर्न, एलेक्सी डोसोवित्स्की, अरविंद महेंद्रन, अनुराग अर्नब, मुस्तफा देहघानी, ज़ुओरन शेन, जिओ वांग, ज़ियाओहुआ झाई, थॉमस किफ़, और नील हॉल्सबी द्वारा पोस्ट किया गया। 1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI से) Matthias Minderer, Alexey Gritsenko, Neil Houlsby. द्वाराअनुसंधान पत्र [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) के साथ जारी किया गया +1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** ( IBM Research से) Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. द्वाराअनुसंधान पत्र [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) के साथ जारी किया गया 1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (IBM से) Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. द्वाराअनुसंधान पत्र [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf) के साथ जारी किया गया 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. 1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google की ओर से) साथ में दिया गया पेपर [लंबे इनपुट सारांश के लिए ट्रांसफ़ॉर्मरों को बेहतर तरीके से एक्सटेंड करना](https://arxiv .org/abs/2208.04347) जेसन फांग, याओ झाओ, पीटर जे लियू द्वारा। diff --git a/README_ja.md b/README_ja.md index 6cba1935f43d9f..bbe814543f6f12 100644 --- a/README_ja.md +++ b/README_ja.md @@ -449,6 +449,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI から) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al から公開された研究論文: [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby から公開された研究論文: [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Neil Houlsby. から公開された研究論文 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) +1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** ( IBM Research から) Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. から公開された研究論文 [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) 1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (IBM から) Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. から公開された研究論文 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf) 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google から) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu から公開された研究論文: [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google から) Jason Phang, Yao Zhao, and Peter J. Liu から公開された研究論文: [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) diff --git a/README_ko.md b/README_ko.md index 4a4aa19fcbf7fe..43a7dee808cdbf 100644 --- a/README_ko.md +++ b/README_ko.md @@ -364,6 +364,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI 에서) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 의 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 논문과 함께 발표했습니다. 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI 에서) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 의 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 논문과 함께 발표했습니다. 1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI 에서 제공)은 Matthias Minderer, Alexey Gritsenko, Neil Houlsby.의 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683)논문과 함께 발표했습니다. +1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** ( IBM Research 에서 제공)은 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.의 [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf)논문과 함께 발표했습니다. 1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (IBM 에서 제공)은 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.의 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf)논문과 함께 발표했습니다. 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google 에서) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 의 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 논문과 함께 발표했습니다. 1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google 에서) Jason Phang, Yao Zhao, Peter J. Liu 의 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 논문과 함께 발표했습니다. diff --git a/README_zh-hans.md b/README_zh-hans.md index bbd986d1ff1f5c..411e5ec1dddd2e 100644 --- a/README_zh-hans.md +++ b/README_zh-hans.md @@ -388,6 +388,7 @@ conda install -c huggingface transformers 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。 1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (来自 Google AI) 伴随论文 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) 由 Matthias Minderer, Alexey Gritsenko, Neil Houlsby 发布。 +1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** (来自 IBM Research) 伴随论文 [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) 由 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam 发布。 1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (来自 IBM) 伴随论文 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf) 由 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam 发布。 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。 1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (来自 Google) 伴随论文 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 由 Jason Phang, Yao Zhao, Peter J. Liu 发布。 diff --git a/README_zh-hant.md b/README_zh-hant.md index 2618ce9fe1ed6b..2944be140a40a0 100644 --- a/README_zh-hant.md +++ b/README_zh-hant.md @@ -400,6 +400,7 @@ conda install -c huggingface transformers 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. 1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby. +1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. 1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. 1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu. diff --git a/docs/source/en/_toctree.yml b/docs/source/en/_toctree.yml index 825702c38e5732..7fc684ee830db9 100644 --- a/docs/source/en/_toctree.yml +++ b/docs/source/en/_toctree.yml @@ -757,6 +757,8 @@ title: Autoformer - local: model_doc/informer title: Informer + - local: model_doc/patchtsmixer + title: PatchTSMixer - local: model_doc/patchtst title: PatchTST - local: model_doc/time_series_transformer diff --git a/docs/source/en/index.md b/docs/source/en/index.md index fa70dfc8681f22..a7f9513d676ee3 100644 --- a/docs/source/en/index.md +++ b/docs/source/en/index.md @@ -214,6 +214,7 @@ Flax), PyTorch, and/or TensorFlow. | [OPT](model_doc/opt) | ✅ | ✅ | ✅ | | [OWL-ViT](model_doc/owlvit) | ✅ | ❌ | ❌ | | [OWLv2](model_doc/owlv2) | ✅ | ❌ | ❌ | +| [PatchTSMixer](model_doc/patchtsmixer) | ✅ | ❌ | ❌ | | [PatchTST](model_doc/patchtst) | ✅ | ❌ | ❌ | | [Pegasus](model_doc/pegasus) | ✅ | ✅ | ✅ | | [PEGASUS-X](model_doc/pegasus_x) | ✅ | ❌ | ❌ | diff --git a/docs/source/en/model_doc/patchtsmixer.md b/docs/source/en/model_doc/patchtsmixer.md new file mode 100644 index 00000000000000..fe1de509fd0000 --- /dev/null +++ b/docs/source/en/model_doc/patchtsmixer.md @@ -0,0 +1,90 @@ + + +# PatchTSMixer + +## Overview + +The PatchTSMixer model was proposed in [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong and Jayant Kalagnanam. + + +PatchTSMixer is a lightweight time-series modeling approach based on the MLP-Mixer architecture. In this HuggingFace implementation, we provide PatchTSMixer's capabilities to effortlessly facilitate lightweight mixing across patches, channels, and hidden features for effective multivariate time-series modeling. It also supports various attention mechanisms starting from simple gated attention to more complex self-attention blocks that can be customized accordingly. The model can be pretrained and subsequently used for various downstream tasks such as forecasting, classification and regression. + + +The abstract from the paper is the following: + +*TSMixer is a lightweight neural architecture exclusively composed of multi-layer perceptron (MLP) modules designed for multivariate forecasting and representation learning on patched time series. Our model draws inspiration from the success of MLP-Mixer models in computer vision. We demonstrate the challenges involved in adapting Vision MLP-Mixer for time series and introduce empirically validated components to enhance accuracy. This includes a novel design paradigm of attaching online reconciliation heads to the MLP-Mixer backbone, for explicitly modeling the time-series properties such as hierarchy and channel-correlations. We also propose a Hybrid channel modeling approach to effectively handle noisy channel interactions and generalization across diverse datasets, a common challenge in existing patch channel-mixing methods. Additionally, a simple gated attention mechanism is introduced in the backbone to prioritize important features. By incorporating these lightweight components, we significantly enhance the learning capability of simple MLP structures, outperforming complex Transformer models with minimal computing usage. Moreover, TSMixer's modular design enables compatibility with both supervised and masked self-supervised learning methods, making it a promising building block for time-series Foundation Models. TSMixer outperforms state-of-the-art MLP and Transformer models in forecasting by a considerable margin of 8-60%. It also outperforms the latest strong benchmarks of Patch-Transformer models (by 1-2%) with a significant reduction in memory and runtime (2-3X).* + + + +This model was contributed by [ajati](https://huggingface.co/ajati), [vijaye12](https://huggingface.co/vijaye12), +[gsinthong](https://huggingface.co/gsinthong), [namctin](https://huggingface.co/namctin), +[wmgifford](https://huggingface.co/wmgifford), [kashif](https://huggingface.co/kashif). + + +## Sample usage +```python + +from transformers import PatchTSMixerConfig, PatchTSMixerForPrediction +from transformers import Trainer, TrainingArguments, + + +config = PatchTSMixerConfig(context_length = 512, prediction_length = 96) +model = PatchTSMixerForPrediction(config) +trainer = Trainer(model=model, args=training_args, + train_dataset=train_dataset, + eval_dataset=valid_dataset) +trainer.train() +results = trainer.evaluate(test_dataset) +``` + +## Usage tips + +The model can also be used for time series classification and time series regression. See the respective [`PatchTSMixerForTimeSeriesClassification`] and [`PatchTSMixerForRegression`] classes. + +## PatchTSMixerConfig + +[[autodoc]] PatchTSMixerConfig + + +## PatchTSMixerModel + +[[autodoc]] PatchTSMixerModel + - forward + + +## PatchTSMixerForPrediction + +[[autodoc]] PatchTSMixerForPrediction + - forward + + +## PatchTSMixerForTimeSeriesClassification + +[[autodoc]] PatchTSMixerForTimeSeriesClassification + - forward + + +## PatchTSMixerForPretraining + +[[autodoc]] PatchTSMixerForPretraining + - forward + + +## PatchTSMixerForRegression + +[[autodoc]] PatchTSMixerForRegression + - forward \ No newline at end of file diff --git a/src/transformers/__init__.py b/src/transformers/__init__.py index b1d5c6e8f9ce0b..84a3d257ee6e1d 100644 --- a/src/transformers/__init__.py +++ b/src/transformers/__init__.py @@ -186,16 +186,28 @@ "WordpieceTokenizer", ], "models.bert_generation": ["BertGenerationConfig"], - "models.bert_japanese": ["BertJapaneseTokenizer", "CharacterTokenizer", "MecabTokenizer"], + "models.bert_japanese": [ + "BertJapaneseTokenizer", + "CharacterTokenizer", + "MecabTokenizer", + ], "models.bertweet": ["BertweetTokenizer"], "models.big_bird": ["BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdConfig"], "models.bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", ], - "models.biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig", "BioGptTokenizer"], + "models.biogpt": [ + "BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "BioGptConfig", + "BioGptTokenizer", + ], "models.bit": ["BIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BitConfig"], - "models.blenderbot": ["BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotTokenizer"], + "models.blenderbot": [ + "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "BlenderbotConfig", + "BlenderbotTokenizer", + ], "models.blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", @@ -223,10 +235,18 @@ "BridgeTowerTextConfig", "BridgeTowerVisionConfig", ], - "models.bros": ["BROS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BrosConfig", "BrosProcessor"], + "models.bros": [ + "BROS_PRETRAINED_CONFIG_ARCHIVE_MAP", + "BrosConfig", + "BrosProcessor", + ], "models.byt5": ["ByT5Tokenizer"], "models.camembert": ["CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CamembertConfig"], - "models.canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig", "CanineTokenizer"], + "models.canine": [ + "CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", + "CanineConfig", + "CanineTokenizer", + ], "models.chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", @@ -266,14 +286,36 @@ "ClvpTokenizer", ], "models.code_llama": [], - "models.codegen": ["CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP", "CodeGenConfig", "CodeGenTokenizer"], - "models.conditional_detr": ["CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig"], - "models.convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertTokenizer"], + "models.codegen": [ + "CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP", + "CodeGenConfig", + "CodeGenTokenizer", + ], + "models.conditional_detr": [ + "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", + "ConditionalDetrConfig", + ], + "models.convbert": [ + "CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "ConvBertConfig", + "ConvBertTokenizer", + ], "models.convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig"], - "models.convnextv2": ["CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextV2Config"], + "models.convnextv2": [ + "CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP", + "ConvNextV2Config", + ], "models.cpm": [], - "models.cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig", "CpmAntTokenizer"], - "models.ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig", "CTRLTokenizer"], + "models.cpmant": [ + "CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "CpmAntConfig", + "CpmAntTokenizer", + ], + "models.ctrl": [ + "CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", + "CTRLConfig", + "CTRLTokenizer", + ], "models.cvt": ["CVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CvtConfig"], "models.data2vec": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", @@ -282,10 +324,23 @@ "Data2VecTextConfig", "Data2VecVisionConfig", ], - "models.deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaTokenizer"], - "models.deberta_v2": ["DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaV2Config"], - "models.decision_transformer": ["DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "DecisionTransformerConfig"], - "models.deformable_detr": ["DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeformableDetrConfig"], + "models.deberta": [ + "DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", + "DebertaConfig", + "DebertaTokenizer", + ], + "models.deberta_v2": [ + "DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", + "DebertaV2Config", + ], + "models.decision_transformer": [ + "DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "DecisionTransformerConfig", + ], + "models.deformable_detr": [ + "DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", + "DeformableDetrConfig", + ], "models.deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig"], "models.deprecated": [], "models.deprecated.bort": [], @@ -296,7 +351,10 @@ "MCTCTProcessor", ], "models.deprecated.mmbt": ["MMBTConfig"], - "models.deprecated.open_llama": ["OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "OpenLlamaConfig"], + "models.deprecated.open_llama": [ + "OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", + "OpenLlamaConfig", + ], "models.deprecated.retribert": [ "RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RetriBertConfig", @@ -319,9 +377,17 @@ "models.dialogpt": [], "models.dinat": ["DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DinatConfig"], "models.dinov2": ["DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Dinov2Config"], - "models.distilbert": ["DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertTokenizer"], + "models.distilbert": [ + "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "DistilBertConfig", + "DistilBertTokenizer", + ], "models.dit": [], - "models.donut": ["DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "DonutProcessor", "DonutSwinConfig"], + "models.donut": [ + "DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", + "DonutProcessor", + "DonutSwinConfig", + ], "models.dpr": [ "DPR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPRConfig", @@ -331,9 +397,19 @@ "DPRReaderTokenizer", ], "models.dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"], - "models.efficientformer": ["EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig"], - "models.efficientnet": ["EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig"], - "models.electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraTokenizer"], + "models.efficientformer": [ + "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "EfficientFormerConfig", + ], + "models.efficientnet": [ + "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", + "EfficientNetConfig", + ], + "models.electra": [ + "ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", + "ElectraConfig", + "ElectraTokenizer", + ], "models.encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", @@ -347,7 +423,11 @@ "models.ernie_m": ["ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieMConfig"], "models.esm": ["ESM_PRETRAINED_CONFIG_ARCHIVE_MAP", "EsmConfig", "EsmTokenizer"], "models.falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], - "models.flaubert": ["FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FlaubertConfig", "FlaubertTokenizer"], + "models.flaubert": [ + "FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "FlaubertConfig", + "FlaubertTokenizer", + ], "models.flava": [ "FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP", "FlavaConfig", @@ -358,16 +438,39 @@ ], "models.fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"], "models.focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"], - "models.fsmt": ["FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FSMTConfig", "FSMTTokenizer"], - "models.funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig", "FunnelTokenizer"], + "models.fsmt": [ + "FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "FSMTConfig", + "FSMTTokenizer", + ], + "models.funnel": [ + "FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", + "FunnelConfig", + "FunnelTokenizer", + ], "models.fuyu": ["FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP", "FuyuConfig"], - "models.git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitProcessor", "GitVisionConfig"], + "models.git": [ + "GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "GitConfig", + "GitProcessor", + "GitVisionConfig", + ], "models.glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"], - "models.gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config", "GPT2Tokenizer"], - "models.gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], + "models.gpt2": [ + "GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", + "GPT2Config", + "GPT2Tokenizer", + ], + "models.gpt_bigcode": [ + "GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", + "GPTBigCodeConfig", + ], "models.gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig"], "models.gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"], - "models.gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], + "models.gpt_neox_japanese": [ + "GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", + "GPTNeoXJapaneseConfig", + ], "models.gpt_sw3": [], "models.gptj": ["GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTJConfig"], "models.gptsan_japanese": [ @@ -375,7 +478,10 @@ "GPTSanJapaneseConfig", "GPTSanJapaneseTokenizer", ], - "models.graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], + "models.graphormer": [ + "GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "GraphormerConfig", + ], "models.groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", @@ -410,7 +516,11 @@ "Kosmos2Config", "Kosmos2Processor", ], - "models.layoutlm": ["LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMConfig", "LayoutLMTokenizer"], + "models.layoutlm": [ + "LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP", + "LayoutLMConfig", + "LayoutLMTokenizer", + ], "models.layoutlmv2": [ "LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config", @@ -432,10 +542,22 @@ "models.levit": ["LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LevitConfig"], "models.lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], "models.llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], - "models.longformer": ["LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerTokenizer"], + "models.longformer": [ + "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "LongformerConfig", + "LongformerTokenizer", + ], "models.longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config"], - "models.luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig", "LukeTokenizer"], - "models.lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig", "LxmertTokenizer"], + "models.luke": [ + "LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", + "LukeConfig", + "LukeTokenizer", + ], + "models.lxmert": [ + "LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "LxmertConfig", + "LxmertTokenizer", + ], "models.m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config"], "models.marian": ["MarianConfig"], "models.markuplm": [ @@ -449,21 +571,50 @@ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], - "models.maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig", "MaskFormerSwinConfig"], + "models.maskformer": [ + "MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "MaskFormerConfig", + "MaskFormerSwinConfig", + ], "models.mbart": ["MBartConfig"], "models.mbart50": [], "models.mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig"], - "models.megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], + "models.megatron_bert": [ + "MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "MegatronBertConfig", + ], "models.megatron_gpt2": [], - "models.mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig", "MgpstrProcessor", "MgpstrTokenizer"], + "models.mgp_str": [ + "MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", + "MgpstrConfig", + "MgpstrProcessor", + "MgpstrTokenizer", + ], "models.mistral": ["MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP", "MistralConfig"], "models.mluke": [], - "models.mobilebert": ["MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertTokenizer"], - "models.mobilenet_v1": ["MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileNetV1Config"], - "models.mobilenet_v2": ["MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileNetV2Config"], + "models.mobilebert": [ + "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "MobileBertConfig", + "MobileBertTokenizer", + ], + "models.mobilenet_v1": [ + "MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP", + "MobileNetV1Config", + ], + "models.mobilenet_v2": [ + "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", + "MobileNetV2Config", + ], "models.mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig"], - "models.mobilevitv2": ["MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTV2Config"], - "models.mpnet": ["MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "MPNetConfig", "MPNetTokenizer"], + "models.mobilevitv2": [ + "MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP", + "MobileViTV2Config", + ], + "models.mpnet": [ + "MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", + "MPNetConfig", + "MPNetTokenizer", + ], "models.mpt": ["MPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MptConfig"], "models.mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"], "models.mt5": ["MT5Config"], @@ -482,8 +633,16 @@ "NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "NystromformerConfig", ], - "models.oneformer": ["ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "OneFormerConfig", "OneFormerProcessor"], - "models.openai": ["OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OpenAIGPTConfig", "OpenAIGPTTokenizer"], + "models.oneformer": [ + "ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "OneFormerConfig", + "OneFormerProcessor", + ], + "models.openai": [ + "OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "OpenAIGPTConfig", + "OpenAIGPTTokenizer", + ], "models.opt": ["OPTConfig"], "models.owlv2": [ "OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP", @@ -499,10 +658,22 @@ "OwlViTTextConfig", "OwlViTVisionConfig", ], + "models.patchtsmixer": [ + "PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "PatchTSMixerConfig", + ], "models.patchtst": ["PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP", "PatchTSTConfig"], - "models.pegasus": ["PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusConfig", "PegasusTokenizer"], + "models.pegasus": [ + "PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", + "PegasusConfig", + "PegasusTokenizer", + ], "models.pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], - "models.perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverTokenizer"], + "models.perceiver": [ + "PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "PerceiverConfig", + "PerceiverTokenizer", + ], "models.persimmon": ["PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAP", "PersimmonConfig"], "models.phi": ["PHI_PRETRAINED_CONFIG_ARCHIVE_MAP", "PhiConfig"], "models.phobert": ["PhobertTokenizer"], @@ -514,24 +685,50 @@ "Pix2StructVisionConfig", ], "models.plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"], - "models.poolformer": ["POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig"], + "models.poolformer": [ + "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "PoolFormerConfig", + ], "models.pop2piano": [ "POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pop2PianoConfig", ], - "models.prophetnet": ["PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ProphetNetConfig", "ProphetNetTokenizer"], + "models.prophetnet": [ + "PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", + "ProphetNetConfig", + "ProphetNetTokenizer", + ], "models.pvt": ["PVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "PvtConfig"], "models.qdqbert": ["QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "QDQBertConfig"], "models.rag": ["RagConfig", "RagRetriever", "RagTokenizer"], - "models.realm": ["REALM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RealmConfig", "RealmTokenizer"], + "models.realm": [ + "REALM_PRETRAINED_CONFIG_ARCHIVE_MAP", + "RealmConfig", + "RealmTokenizer", + ], "models.reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"], "models.regnet": ["REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "RegNetConfig"], "models.rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig"], "models.resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig"], - "models.roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaTokenizer"], - "models.roberta_prelayernorm": ["ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig"], - "models.roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig", "RoCBertTokenizer"], - "models.roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerTokenizer"], + "models.roberta": [ + "ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", + "RobertaConfig", + "RobertaTokenizer", + ], + "models.roberta_prelayernorm": [ + "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", + "RobertaPreLayerNormConfig", + ], + "models.roc_bert": [ + "ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "RoCBertConfig", + "RoCBertTokenizer", + ], + "models.roformer": [ + "ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "RoFormerConfig", + "RoFormerTokenizer", + ], "models.rwkv": ["RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP", "RwkvConfig"], "models.sam": [ "SAM_PRETRAINED_CONFIG_ARCHIVE_MAP", @@ -575,21 +772,45 @@ "SpeechT5HifiGanConfig", "SpeechT5Processor", ], - "models.splinter": ["SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SplinterConfig", "SplinterTokenizer"], - "models.squeezebert": ["SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertTokenizer"], - "models.swiftformer": ["SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig"], + "models.splinter": [ + "SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "SplinterConfig", + "SplinterTokenizer", + ], + "models.squeezebert": [ + "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "SqueezeBertConfig", + "SqueezeBertTokenizer", + ], + "models.swiftformer": [ + "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "SwiftFormerConfig", + ], "models.swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig"], "models.swin2sr": ["SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swin2SRConfig"], "models.swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], - "models.switch_transformers": ["SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwitchTransformersConfig"], + "models.switch_transformers": [ + "SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP", + "SwitchTransformersConfig", + ], "models.t5": ["T5_PRETRAINED_CONFIG_ARCHIVE_MAP", "T5Config"], - "models.table_transformer": ["TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TableTransformerConfig"], - "models.tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig", "TapasTokenizer"], + "models.table_transformer": [ + "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "TableTransformerConfig", + ], + "models.tapas": [ + "TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", + "TapasConfig", + "TapasTokenizer", + ], "models.time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], - "models.timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], + "models.timesformer": [ + "TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "TimesformerConfig", + ], "models.timm_backbone": ["TimmBackboneConfig"], "models.trocr": [ "TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", @@ -631,10 +852,19 @@ "ViltProcessor", ], "models.vision_encoder_decoder": ["VisionEncoderDecoderConfig"], - "models.vision_text_dual_encoder": ["VisionTextDualEncoderConfig", "VisionTextDualEncoderProcessor"], - "models.visual_bert": ["VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VisualBertConfig"], + "models.vision_text_dual_encoder": [ + "VisionTextDualEncoderConfig", + "VisionTextDualEncoderProcessor", + ], + "models.visual_bert": [ + "VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "VisualBertConfig", + ], "models.vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig"], - "models.vit_hybrid": ["VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTHybridConfig"], + "models.vit_hybrid": [ + "VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP", + "ViTHybridConfig", + ], "models.vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"], "models.vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"], "models.vitdet": ["VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP", "VitDetConfig"], @@ -682,9 +912,18 @@ ], "models.xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"], "models.xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMTokenizer"], - "models.xlm_prophetnet": ["XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMProphetNetConfig"], - "models.xlm_roberta": ["XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig"], - "models.xlm_roberta_xl": ["XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig"], + "models.xlm_prophetnet": [ + "XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", + "XLMProphetNetConfig", + ], + "models.xlm_roberta": [ + "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", + "XLMRobertaConfig", + ], + "models.xlm_roberta_xl": [ + "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", + "XLMRobertaXLConfig", + ], "models.xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"], "models.xmod": ["XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig"], "models.yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig"], @@ -760,7 +999,13 @@ "TrainerControl", "TrainerState", ], - "trainer_utils": ["EvalPrediction", "IntervalStrategy", "SchedulerType", "enable_full_determinism", "set_seed"], + "trainer_utils": [ + "EvalPrediction", + "IntervalStrategy", + "SchedulerType", + "enable_full_determinism", + "set_seed", + ], "training_args": ["TrainingArguments"], "training_args_seq2seq": ["Seq2SeqTrainingArguments"], "training_args_tf": ["TFTrainingArguments"], @@ -885,7 +1130,11 @@ _import_structure["models.deprecated.retribert"].append("RetriBertTokenizerFast") _import_structure["models.distilbert"].append("DistilBertTokenizerFast") _import_structure["models.dpr"].extend( - ["DPRContextEncoderTokenizerFast", "DPRQuestionEncoderTokenizerFast", "DPRReaderTokenizerFast"] + [ + "DPRContextEncoderTokenizerFast", + "DPRQuestionEncoderTokenizerFast", + "DPRReaderTokenizerFast", + ] ) _import_structure["models.electra"].append("ElectraTokenizerFast") _import_structure["models.fnet"].append("FNetTokenizerFast") @@ -939,7 +1188,10 @@ name for name in dir(dummy_sentencepiece_and_tokenizers_objects) if not name.startswith("_") ] else: - _import_structure["convert_slow_tokenizer"] = ["SLOW_TO_FAST_CONVERTERS", "convert_slow_tokenizer"] + _import_structure["convert_slow_tokenizer"] = [ + "SLOW_TO_FAST_CONVERTERS", + "convert_slow_tokenizer", + ] # Tensorflow-text-specific objects try: @@ -1657,10 +1909,19 @@ ) _import_structure["models.deprecated.mmbt"].extend(["MMBTForClassification", "MMBTModel", "ModalEmbeddings"]) _import_structure["models.deprecated.open_llama"].extend( - ["OpenLlamaForCausalLM", "OpenLlamaForSequenceClassification", "OpenLlamaModel", "OpenLlamaPreTrainedModel"] + [ + "OpenLlamaForCausalLM", + "OpenLlamaForSequenceClassification", + "OpenLlamaModel", + "OpenLlamaPreTrainedModel", + ] ) _import_structure["models.deprecated.retribert"].extend( - ["RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RetriBertModel", "RetriBertPreTrainedModel"] + [ + "RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST", + "RetriBertModel", + "RetriBertPreTrainedModel", + ] ) _import_structure["models.deprecated.trajectory_transformer"].extend( [ @@ -2165,7 +2426,12 @@ ] ) _import_structure["models.llama"].extend( - ["LlamaForCausalLM", "LlamaForSequenceClassification", "LlamaModel", "LlamaPreTrainedModel"] + [ + "LlamaForCausalLM", + "LlamaForSequenceClassification", + "LlamaModel", + "LlamaPreTrainedModel", + ] ) _import_structure["models.longformer"].extend( [ @@ -2298,7 +2564,12 @@ ] ) _import_structure["models.mistral"].extend( - ["MistralForCausalLM", "MistralForSequenceClassification", "MistralModel", "MistralPreTrainedModel"] + [ + "MistralForCausalLM", + "MistralForSequenceClassification", + "MistralModel", + "MistralPreTrainedModel", + ] ) _import_structure["models.mobilebert"].extend( [ @@ -2515,6 +2786,17 @@ "OwlViTVisionModel", ] ) + _import_structure["models.patchtsmixer"].extend( + [ + "PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST", + "PatchTSMixerForPrediction", + "PatchTSMixerForPretraining", + "PatchTSMixerForRegression", + "PatchTSMixerForTimeSeriesClassification", + "PatchTSMixerModel", + "PatchTSMixerPreTrainedModel", + ] + ) _import_structure["models.patchtst"].extend( [ "PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST", @@ -2527,7 +2809,12 @@ ] ) _import_structure["models.pegasus"].extend( - ["PegasusForCausalLM", "PegasusForConditionalGeneration", "PegasusModel", "PegasusPreTrainedModel"] + [ + "PegasusForCausalLM", + "PegasusForConditionalGeneration", + "PegasusModel", + "PegasusPreTrainedModel", + ] ) _import_structure["models.pegasus_x"].extend( [ @@ -2553,7 +2840,12 @@ ] ) _import_structure["models.persimmon"].extend( - ["PersimmonForCausalLM", "PersimmonForSequenceClassification", "PersimmonModel", "PersimmonPreTrainedModel"] + [ + "PersimmonForCausalLM", + "PersimmonForSequenceClassification", + "PersimmonModel", + "PersimmonPreTrainedModel", + ] ) _import_structure["models.phi"].extend( [ @@ -2635,7 +2927,12 @@ ] ) _import_structure["models.rag"].extend( - ["RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration"] + [ + "RagModel", + "RagPreTrainedModel", + "RagSequenceForGeneration", + "RagTokenForGeneration", + ] ) _import_structure["models.realm"].extend( [ @@ -2961,7 +3258,11 @@ ) _import_structure["models.timm_backbone"].extend(["TimmBackbone"]) _import_structure["models.trocr"].extend( - ["TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel"] + [ + "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", + "TrOCRForCausalLM", + "TrOCRPreTrainedModel", + ] ) _import_structure["models.tvlt"].extend( [ @@ -3298,7 +3599,11 @@ "get_polynomial_decay_schedule_with_warmup", "get_scheduler", ] - _import_structure["pytorch_utils"] = ["Conv1D", "apply_chunking_to_forward", "prune_layer"] + _import_structure["pytorch_utils"] = [ + "Conv1D", + "apply_chunking_to_forward", + "prune_layer", + ] _import_structure["sagemaker"] = [] _import_structure["time_series_utils"] = [] _import_structure["trainer"] = ["Trainer"] @@ -3411,7 +3716,12 @@ ] ) _import_structure["models.bart"].extend( - ["TFBartForConditionalGeneration", "TFBartForSequenceClassification", "TFBartModel", "TFBartPretrainedModel"] + [ + "TFBartForConditionalGeneration", + "TFBartForSequenceClassification", + "TFBartModel", + "TFBartPretrainedModel", + ] ) _import_structure["models.bert"].extend( [ @@ -3431,10 +3741,18 @@ ] ) _import_structure["models.blenderbot"].extend( - ["TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel"] + [ + "TFBlenderbotForConditionalGeneration", + "TFBlenderbotModel", + "TFBlenderbotPreTrainedModel", + ] ) _import_structure["models.blenderbot_small"].extend( - ["TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel"] + [ + "TFBlenderbotSmallForConditionalGeneration", + "TFBlenderbotSmallModel", + "TFBlenderbotSmallPreTrainedModel", + ] ) _import_structure["models.blip"].extend( [ @@ -3795,7 +4113,11 @@ ] ) _import_structure["models.pegasus"].extend( - ["TFPegasusForConditionalGeneration", "TFPegasusModel", "TFPegasusPreTrainedModel"] + [ + "TFPegasusForConditionalGeneration", + "TFPegasusModel", + "TFPegasusPreTrainedModel", + ] ) _import_structure["models.rag"].extend( [ @@ -4010,7 +4332,12 @@ "TFXLNetPreTrainedModel", ] ) - _import_structure["optimization_tf"] = ["AdamWeightDecay", "GradientAccumulator", "WarmUp", "create_optimizer"] + _import_structure["optimization_tf"] = [ + "AdamWeightDecay", + "GradientAccumulator", + "WarmUp", + "create_optimizer", + ] _import_structure["tf_utils"] = [] _import_structure["trainer_tf"] = ["TFTrainer"] @@ -4025,7 +4352,9 @@ ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: - from .utils import dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects + from .utils import ( + dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects, + ) _import_structure["utils.dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects"] = [ name @@ -4164,7 +4493,11 @@ ] ) _import_structure["models.blenderbot"].extend( - ["FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel"] + [ + "FlaxBlenderbotForConditionalGeneration", + "FlaxBlenderbotModel", + "FlaxBlenderbotPreTrainedModel", + ] ) _import_structure["models.blenderbot_small"].extend( [ @@ -4222,7 +4555,11 @@ ) _import_structure["models.gptj"].extend(["FlaxGPTJForCausalLM", "FlaxGPTJModel", "FlaxGPTJPreTrainedModel"]) _import_structure["models.longt5"].extend( - ["FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel"] + [ + "FlaxLongT5ForConditionalGeneration", + "FlaxLongT5Model", + "FlaxLongT5PreTrainedModel", + ] ) _import_structure["models.marian"].extend( [ @@ -4256,10 +4593,18 @@ ] ) _import_structure["models.regnet"].extend( - ["FlaxRegNetForImageClassification", "FlaxRegNetModel", "FlaxRegNetPreTrainedModel"] + [ + "FlaxRegNetForImageClassification", + "FlaxRegNetModel", + "FlaxRegNetPreTrainedModel", + ] ) _import_structure["models.resnet"].extend( - ["FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel"] + [ + "FlaxResNetForImageClassification", + "FlaxResNetModel", + "FlaxResNetPreTrainedModel", + ] ) _import_structure["models.roberta"].extend( [ @@ -4298,13 +4643,23 @@ ) _import_structure["models.speech_encoder_decoder"].append("FlaxSpeechEncoderDecoderModel") _import_structure["models.t5"].extend( - ["FlaxT5EncoderModel", "FlaxT5ForConditionalGeneration", "FlaxT5Model", "FlaxT5PreTrainedModel"] + [ + "FlaxT5EncoderModel", + "FlaxT5ForConditionalGeneration", + "FlaxT5Model", + "FlaxT5PreTrainedModel", + ] ) _import_structure["models.vision_encoder_decoder"].append("FlaxVisionEncoderDecoderModel") _import_structure["models.vision_text_dual_encoder"].extend(["FlaxVisionTextDualEncoderModel"]) _import_structure["models.vit"].extend(["FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel"]) _import_structure["models.wav2vec2"].extend( - ["FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel"] + [ + "FlaxWav2Vec2ForCTC", + "FlaxWav2Vec2ForPreTraining", + "FlaxWav2Vec2Model", + "FlaxWav2Vec2PreTrainedModel", + ] ) _import_structure["models.whisper"].extend( [ @@ -4465,13 +4820,28 @@ WordpieceTokenizer, ) from .models.bert_generation import BertGenerationConfig - from .models.bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer + from .models.bert_japanese import ( + BertJapaneseTokenizer, + CharacterTokenizer, + MecabTokenizer, + ) from .models.bertweet import BertweetTokenizer from .models.big_bird import BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdConfig - from .models.bigbird_pegasus import BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig - from .models.biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig, BioGptTokenizer + from .models.bigbird_pegasus import ( + BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, + BigBirdPegasusConfig, + ) + from .models.biogpt import ( + BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, + BioGptConfig, + BioGptTokenizer, + ) from .models.bit import BIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BitConfig - from .models.blenderbot import BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotTokenizer + from .models.blenderbot import ( + BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, + BlenderbotConfig, + BlenderbotTokenizer, + ) from .models.blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, @@ -4499,10 +4869,21 @@ BridgeTowerTextConfig, BridgeTowerVisionConfig, ) - from .models.bros import BROS_PRETRAINED_CONFIG_ARCHIVE_MAP, BrosConfig, BrosProcessor + from .models.bros import ( + BROS_PRETRAINED_CONFIG_ARCHIVE_MAP, + BrosConfig, + BrosProcessor, + ) from .models.byt5 import ByT5Tokenizer - from .models.camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig - from .models.canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig, CanineTokenizer + from .models.camembert import ( + CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, + CamembertConfig, + ) + from .models.canine import ( + CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, + CanineConfig, + CanineTokenizer, + ) from .models.chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, @@ -4541,13 +4922,35 @@ ClvpProcessor, ClvpTokenizer, ) - from .models.codegen import CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP, CodeGenConfig, CodeGenTokenizer - from .models.conditional_detr import CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig - from .models.convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertTokenizer + from .models.codegen import ( + CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP, + CodeGenConfig, + CodeGenTokenizer, + ) + from .models.conditional_detr import ( + CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, + ConditionalDetrConfig, + ) + from .models.convbert import ( + CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, + ConvBertConfig, + ConvBertTokenizer, + ) from .models.convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig - from .models.convnextv2 import CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextV2Config - from .models.cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig, CpmAntTokenizer - from .models.ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig, CTRLTokenizer + from .models.convnextv2 import ( + CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP, + ConvNextV2Config, + ) + from .models.cpmant import ( + CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, + CpmAntConfig, + CpmAntTokenizer, + ) + from .models.ctrl import ( + CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, + CTRLConfig, + CTRLTokenizer, + ) from .models.cvt import CVT_PRETRAINED_CONFIG_ARCHIVE_MAP, CvtConfig from .models.data2vec import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, @@ -4556,13 +4959,23 @@ Data2VecTextConfig, Data2VecVisionConfig, ) - from .models.deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaTokenizer - from .models.deberta_v2 import DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaV2Config + from .models.deberta import ( + DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, + DebertaConfig, + DebertaTokenizer, + ) + from .models.deberta_v2 import ( + DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, + DebertaV2Config, + ) from .models.decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, DecisionTransformerConfig, ) - from .models.deformable_detr import DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DeformableDetrConfig + from .models.deformable_detr import ( + DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, + DeformableDetrConfig, + ) from .models.deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig from .models.deprecated.mctct import ( MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, @@ -4571,7 +4984,10 @@ MCTCTProcessor, ) from .models.deprecated.mmbt import MMBTConfig - from .models.deprecated.open_llama import OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenLlamaConfig + from .models.deprecated.open_llama import ( + OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, + OpenLlamaConfig, + ) from .models.deprecated.retribert import ( RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig, @@ -4593,8 +5009,16 @@ from .models.detr import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DetrConfig from .models.dinat import DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP, DinatConfig from .models.dinov2 import DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP, Dinov2Config - from .models.distilbert import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertTokenizer - from .models.donut import DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, DonutProcessor, DonutSwinConfig + from .models.distilbert import ( + DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, + DistilBertConfig, + DistilBertTokenizer, + ) + from .models.donut import ( + DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, + DonutProcessor, + DonutSwinConfig, + ) from .models.dpr import ( DPR_PRETRAINED_CONFIG_ARCHIVE_MAP, DPRConfig, @@ -4604,9 +5028,19 @@ DPRReaderTokenizer, ) from .models.dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig - from .models.efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig - from .models.efficientnet import EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig - from .models.electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraTokenizer + from .models.efficientformer import ( + EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + EfficientFormerConfig, + ) + from .models.efficientnet import ( + EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, + EfficientNetConfig, + ) + from .models.electra import ( + ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, + ElectraConfig, + ElectraTokenizer, + ) from .models.encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, @@ -4617,7 +5051,11 @@ from .models.ernie_m import ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieMConfig from .models.esm import ESM_PRETRAINED_CONFIG_ARCHIVE_MAP, EsmConfig, EsmTokenizer from .models.falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig - from .models.flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig, FlaubertTokenizer + from .models.flaubert import ( + FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, + FlaubertConfig, + FlaubertTokenizer, + ) from .models.flava import ( FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP, FlavaConfig, @@ -4628,23 +5066,49 @@ ) from .models.fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig from .models.focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig - from .models.fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig, FSMTTokenizer - from .models.funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig, FunnelTokenizer + from .models.fsmt import ( + FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, + FSMTConfig, + FSMTTokenizer, + ) + from .models.funnel import ( + FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, + FunnelConfig, + FunnelTokenizer, + ) from .models.fuyu import FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP, FuyuConfig - from .models.git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitProcessor, GitVisionConfig + from .models.git import ( + GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, + GitConfig, + GitProcessor, + GitVisionConfig, + ) from .models.glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig - from .models.gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2Tokenizer - from .models.gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig + from .models.gpt2 import ( + GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, + GPT2Config, + GPT2Tokenizer, + ) + from .models.gpt_bigcode import ( + GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, + GPTBigCodeConfig, + ) from .models.gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig from .models.gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig - from .models.gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig + from .models.gpt_neox_japanese import ( + GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, + GPTNeoXJapaneseConfig, + ) from .models.gptj import GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTJConfig from .models.gptsan_japanese import ( GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTSanJapaneseConfig, GPTSanJapaneseTokenizer, ) - from .models.graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig + from .models.graphormer import ( + GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + GraphormerConfig, + ) from .models.groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, @@ -4679,7 +5143,11 @@ Kosmos2Config, Kosmos2Processor, ) - from .models.layoutlm import LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMConfig, LayoutLMTokenizer + from .models.layoutlm import ( + LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP, + LayoutLMConfig, + LayoutLMTokenizer, + ) from .models.layoutlmv2 import ( LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMv2Config, @@ -4701,10 +5169,22 @@ from .models.levit import LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, LevitConfig from .models.lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig from .models.llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig - from .models.longformer import LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerTokenizer + from .models.longformer import ( + LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + LongformerConfig, + LongformerTokenizer, + ) from .models.longt5 import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongT5Config - from .models.luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig, LukeTokenizer - from .models.lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig, LxmertTokenizer + from .models.luke import ( + LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, + LukeConfig, + LukeTokenizer, + ) + from .models.lxmert import ( + LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, + LxmertConfig, + LxmertTokenizer, + ) from .models.m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config from .models.marian import MarianConfig from .models.markuplm import ( @@ -4714,19 +5194,54 @@ MarkupLMProcessor, MarkupLMTokenizer, ) - from .models.mask2former import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, Mask2FormerConfig - from .models.maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig, MaskFormerSwinConfig + from .models.mask2former import ( + MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + Mask2FormerConfig, + ) + from .models.maskformer import ( + MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + MaskFormerConfig, + MaskFormerSwinConfig, + ) from .models.mbart import MBartConfig from .models.mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig - from .models.megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig - from .models.mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig, MgpstrProcessor, MgpstrTokenizer + from .models.megatron_bert import ( + MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, + MegatronBertConfig, + ) + from .models.mgp_str import ( + MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, + MgpstrConfig, + MgpstrProcessor, + MgpstrTokenizer, + ) from .models.mistral import MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP, MistralConfig - from .models.mobilebert import MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertTokenizer - from .models.mobilenet_v1 import MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetV1Config - from .models.mobilenet_v2 import MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetV2Config - from .models.mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig - from .models.mobilevitv2 import MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTV2Config - from .models.mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig, MPNetTokenizer + from .models.mobilebert import ( + MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, + MobileBertConfig, + MobileBertTokenizer, + ) + from .models.mobilenet_v1 import ( + MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP, + MobileNetV1Config, + ) + from .models.mobilenet_v2 import ( + MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, + MobileNetV2Config, + ) + from .models.mobilevit import ( + MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, + MobileViTConfig, + ) + from .models.mobilevitv2 import ( + MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP, + MobileViTV2Config, + ) + from .models.mpnet import ( + MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, + MPNetConfig, + MPNetTokenizer, + ) from .models.mpt import MPT_PRETRAINED_CONFIG_ARCHIVE_MAP, MptConfig from .models.mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig from .models.mt5 import MT5Config @@ -4740,9 +5255,20 @@ from .models.nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig from .models.nllb_moe import NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig from .models.nougat import NougatProcessor - from .models.nystromformer import NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, NystromformerConfig - from .models.oneformer import ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, OneFormerConfig, OneFormerProcessor - from .models.openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig, OpenAIGPTTokenizer + from .models.nystromformer import ( + NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + NystromformerConfig, + ) + from .models.oneformer import ( + ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + OneFormerConfig, + OneFormerProcessor, + ) + from .models.openai import ( + OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, + OpenAIGPTConfig, + OpenAIGPTTokenizer, + ) from .models.opt import OPTConfig from .models.owlv2 import ( OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP, @@ -4758,11 +5284,29 @@ OwlViTTextConfig, OwlViTVisionConfig, ) + from .models.patchtsmixer import ( + PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP, + PatchTSMixerConfig, + ) from .models.patchtst import PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP, PatchTSTConfig - from .models.pegasus import PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusConfig, PegasusTokenizer - from .models.pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig - from .models.perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverTokenizer - from .models.persimmon import PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAP, PersimmonConfig + from .models.pegasus import ( + PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, + PegasusConfig, + PegasusTokenizer, + ) + from .models.pegasus_x import ( + PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, + PegasusXConfig, + ) + from .models.perceiver import ( + PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, + PerceiverConfig, + PerceiverTokenizer, + ) + from .models.persimmon import ( + PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAP, + PersimmonConfig, + ) from .models.phi import PHI_PRETRAINED_CONFIG_ARCHIVE_MAP, PhiConfig from .models.phobert import PhobertTokenizer from .models.pix2struct import ( @@ -4773,27 +5317,50 @@ Pix2StructVisionConfig, ) from .models.plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig - from .models.poolformer import POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig + from .models.poolformer import ( + POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + PoolFormerConfig, + ) from .models.pop2piano import ( POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP, Pop2PianoConfig, ) - from .models.prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig, ProphetNetTokenizer + from .models.prophetnet import ( + PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, + ProphetNetConfig, + ProphetNetTokenizer, + ) from .models.pvt import PVT_PRETRAINED_CONFIG_ARCHIVE_MAP, PvtConfig from .models.qdqbert import QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, QDQBertConfig from .models.rag import RagConfig, RagRetriever, RagTokenizer - from .models.realm import REALM_PRETRAINED_CONFIG_ARCHIVE_MAP, RealmConfig, RealmTokenizer + from .models.realm import ( + REALM_PRETRAINED_CONFIG_ARCHIVE_MAP, + RealmConfig, + RealmTokenizer, + ) from .models.reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig from .models.regnet import REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP, RegNetConfig from .models.rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig from .models.resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig - from .models.roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaTokenizer + from .models.roberta import ( + ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, + RobertaConfig, + RobertaTokenizer, + ) from .models.roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, ) - from .models.roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig, RoCBertTokenizer - from .models.roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerTokenizer + from .models.roc_bert import ( + ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, + RoCBertConfig, + RoCBertTokenizer, + ) + from .models.roformer import ( + ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + RoFormerConfig, + RoFormerTokenizer, + ) from .models.rwkv import RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP, RwkvConfig from .models.sam import ( SAM_PRETRAINED_CONFIG_ARCHIVE_MAP, @@ -4813,7 +5380,10 @@ SEAMLESS_M4T_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, SeamlessM4Tv2Config, ) - from .models.segformer import SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SegformerConfig + from .models.segformer import ( + SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + SegformerConfig, + ) from .models.sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig from .models.sew_d import SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWDConfig from .models.speech_encoder_decoder import SpeechEncoderDecoderConfig @@ -4837,32 +5407,71 @@ SpeechT5HifiGanConfig, SpeechT5Processor, ) - from .models.splinter import SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP, SplinterConfig, SplinterTokenizer - from .models.squeezebert import SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertTokenizer - from .models.swiftformer import SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig + from .models.splinter import ( + SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP, + SplinterConfig, + SplinterTokenizer, + ) + from .models.squeezebert import ( + SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, + SqueezeBertConfig, + SqueezeBertTokenizer, + ) + from .models.swiftformer import ( + SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + SwiftFormerConfig, + ) from .models.swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig from .models.swin2sr import SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP, Swin2SRConfig from .models.swinv2 import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, Swinv2Config - from .models.switch_transformers import SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP, SwitchTransformersConfig + from .models.switch_transformers import ( + SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP, + SwitchTransformersConfig, + ) from .models.t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config - from .models.table_transformer import TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig - from .models.tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig, TapasTokenizer + from .models.table_transformer import ( + TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + TableTransformerConfig, + ) + from .models.tapas import ( + TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, + TapasConfig, + TapasTokenizer, + ) from .models.time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) - from .models.timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig + from .models.timesformer import ( + TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + TimesformerConfig, + ) from .models.timm_backbone import TimmBackboneConfig - from .models.trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig, TrOCRProcessor - from .models.tvlt import TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP, TvltConfig, TvltFeatureExtractor, TvltProcessor + from .models.trocr import ( + TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, + TrOCRConfig, + TrOCRProcessor, + ) + from .models.tvlt import ( + TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP, + TvltConfig, + TvltFeatureExtractor, + TvltProcessor, + ) from .models.tvp import ( TVP_PRETRAINED_CONFIG_ARCHIVE_MAP, TvpConfig, TvpProcessor, ) from .models.umt5 import UMT5Config - from .models.unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig - from .models.unispeech_sat import UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechSatConfig + from .models.unispeech import ( + UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, + UniSpeechConfig, + ) + from .models.unispeech_sat import ( + UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP, + UniSpeechSatConfig, + ) from .models.univnet import ( UNIVNET_PRETRAINED_CONFIG_ARCHIVE_MAP, UnivNetConfig, @@ -4878,10 +5487,19 @@ ViltProcessor, ) from .models.vision_encoder_decoder import VisionEncoderDecoderConfig - from .models.vision_text_dual_encoder import VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor - from .models.visual_bert import VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, VisualBertConfig + from .models.vision_text_dual_encoder import ( + VisionTextDualEncoderConfig, + VisionTextDualEncoderProcessor, + ) + from .models.visual_bert import ( + VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, + VisualBertConfig, + ) from .models.vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig - from .models.vit_hybrid import VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTHybridConfig + from .models.vit_hybrid import ( + VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP, + ViTHybridConfig, + ) from .models.vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig from .models.vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig from .models.vitdet import VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP, VitDetConfig @@ -4900,7 +5518,10 @@ Wav2Vec2Processor, Wav2Vec2Tokenizer, ) - from .models.wav2vec2_conformer import WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, Wav2Vec2ConformerConfig + from .models.wav2vec2_conformer import ( + WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + Wav2Vec2ConformerConfig, + ) from .models.wav2vec2_phoneme import Wav2Vec2PhonemeCTCTokenizer from .models.wav2vec2_with_lm import Wav2Vec2ProcessorWithLM from .models.wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig @@ -4920,9 +5541,18 @@ ) from .models.xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig from .models.xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMTokenizer - from .models.xlm_prophetnet import XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMProphetNetConfig - from .models.xlm_roberta import XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig - from .models.xlm_roberta_xl import XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig + from .models.xlm_prophetnet import ( + XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, + XLMProphetNetConfig, + ) + from .models.xlm_roberta import ( + XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, + XLMRobertaConfig, + ) + from .models.xlm_roberta_xl import ( + XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, + XLMRobertaXLConfig, + ) from .models.xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig from .models.xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig from .models.yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig @@ -5004,7 +5634,13 @@ TrainerControl, TrainerState, ) - from .trainer_utils import EvalPrediction, IntervalStrategy, SchedulerType, enable_full_determinism, set_seed + from .trainer_utils import ( + EvalPrediction, + IntervalStrategy, + SchedulerType, + enable_full_determinism, + set_seed, + ) from .training_args import TrainingArguments from .training_args_seq2seq import Seq2SeqTrainingArguments from .training_args_tf import TFTrainingArguments @@ -5120,7 +5756,11 @@ from .models.deberta_v2 import DebertaV2TokenizerFast from .models.deprecated.retribert import RetriBertTokenizerFast from .models.distilbert import DistilBertTokenizerFast - from .models.dpr import DPRContextEncoderTokenizerFast, DPRQuestionEncoderTokenizerFast, DPRReaderTokenizerFast + from .models.dpr import ( + DPRContextEncoderTokenizerFast, + DPRQuestionEncoderTokenizerFast, + DPRReaderTokenizerFast, + ) from .models.electra import ElectraTokenizerFast from .models.fnet import FNetTokenizerFast from .models.funnel import FunnelTokenizerFast @@ -5168,7 +5808,10 @@ except OptionalDependencyNotAvailable: from .utils.dummies_sentencepiece_and_tokenizers_objects import * else: - from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS, convert_slow_tokenizer + from .convert_slow_tokenizer import ( + SLOW_TO_FAST_CONVERTERS, + convert_slow_tokenizer, + ) try: if not is_tensorflow_text_available(): @@ -5198,11 +5841,20 @@ from .models.bit import BitImageProcessor from .models.blip import BlipImageProcessor from .models.bridgetower import BridgeTowerImageProcessor - from .models.chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor + from .models.chinese_clip import ( + ChineseCLIPFeatureExtractor, + ChineseCLIPImageProcessor, + ) from .models.clip import CLIPFeatureExtractor, CLIPImageProcessor - from .models.conditional_detr import ConditionalDetrFeatureExtractor, ConditionalDetrImageProcessor + from .models.conditional_detr import ( + ConditionalDetrFeatureExtractor, + ConditionalDetrImageProcessor, + ) from .models.convnext import ConvNextFeatureExtractor, ConvNextImageProcessor - from .models.deformable_detr import DeformableDetrFeatureExtractor, DeformableDetrImageProcessor + from .models.deformable_detr import ( + DeformableDetrFeatureExtractor, + DeformableDetrImageProcessor, + ) from .models.deit import DeiTFeatureExtractor, DeiTImageProcessor from .models.deta import DetaImageProcessor from .models.detr import DetrFeatureExtractor, DetrImageProcessor @@ -5210,18 +5862,37 @@ from .models.dpt import DPTFeatureExtractor, DPTImageProcessor from .models.efficientformer import EfficientFormerImageProcessor from .models.efficientnet import EfficientNetImageProcessor - from .models.flava import FlavaFeatureExtractor, FlavaImageProcessor, FlavaProcessor + from .models.flava import ( + FlavaFeatureExtractor, + FlavaImageProcessor, + FlavaProcessor, + ) from .models.fuyu import FuyuImageProcessor, FuyuProcessor from .models.glpn import GLPNFeatureExtractor, GLPNImageProcessor from .models.idefics import IdeficsImageProcessor from .models.imagegpt import ImageGPTFeatureExtractor, ImageGPTImageProcessor - from .models.layoutlmv2 import LayoutLMv2FeatureExtractor, LayoutLMv2ImageProcessor - from .models.layoutlmv3 import LayoutLMv3FeatureExtractor, LayoutLMv3ImageProcessor + from .models.layoutlmv2 import ( + LayoutLMv2FeatureExtractor, + LayoutLMv2ImageProcessor, + ) + from .models.layoutlmv3 import ( + LayoutLMv3FeatureExtractor, + LayoutLMv3ImageProcessor, + ) from .models.levit import LevitFeatureExtractor, LevitImageProcessor from .models.mask2former import Mask2FormerImageProcessor - from .models.maskformer import MaskFormerFeatureExtractor, MaskFormerImageProcessor - from .models.mobilenet_v1 import MobileNetV1FeatureExtractor, MobileNetV1ImageProcessor - from .models.mobilenet_v2 import MobileNetV2FeatureExtractor, MobileNetV2ImageProcessor + from .models.maskformer import ( + MaskFormerFeatureExtractor, + MaskFormerImageProcessor, + ) + from .models.mobilenet_v1 import ( + MobileNetV1FeatureExtractor, + MobileNetV1ImageProcessor, + ) + from .models.mobilenet_v2 import ( + MobileNetV2FeatureExtractor, + MobileNetV2ImageProcessor, + ) from .models.mobilevit import MobileViTFeatureExtractor, MobileViTImageProcessor from .models.nougat import NougatImageProcessor from .models.oneformer import OneFormerImageProcessor @@ -5229,7 +5900,10 @@ from .models.owlvit import OwlViTFeatureExtractor, OwlViTImageProcessor from .models.perceiver import PerceiverFeatureExtractor, PerceiverImageProcessor from .models.pix2struct import Pix2StructImageProcessor - from .models.poolformer import PoolFormerFeatureExtractor, PoolFormerImageProcessor + from .models.poolformer import ( + PoolFormerFeatureExtractor, + PoolFormerImageProcessor, + ) from .models.pvt import PvtImageProcessor from .models.sam import SamImageProcessor from .models.segformer import SegformerFeatureExtractor, SegformerImageProcessor @@ -5767,7 +6441,11 @@ MCTCTModel, MCTCTPreTrainedModel, ) - from .models.deprecated.mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings + from .models.deprecated.mmbt import ( + MMBTForClassification, + MMBTModel, + ModalEmbeddings, + ) from .models.deprecated.open_llama import ( OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, @@ -5836,7 +6514,11 @@ DistilBertModel, DistilBertPreTrainedModel, ) - from .models.donut import DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, DonutSwinModel, DonutSwinPreTrainedModel + from .models.donut import ( + DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, + DonutSwinModel, + DonutSwinPreTrainedModel, + ) from .models.dpr import ( DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, @@ -5972,7 +6654,11 @@ FocalNetModel, FocalNetPreTrainedModel, ) - from .models.fsmt import FSMTForConditionalGeneration, FSMTModel, PretrainedFSMTModel + from .models.fsmt import ( + FSMTForConditionalGeneration, + FSMTModel, + PretrainedFSMTModel, + ) from .models.funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, @@ -6182,7 +6868,12 @@ LiltModel, LiltPreTrainedModel, ) - from .models.llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel + from .models.llama import ( + LlamaForCausalLM, + LlamaForSequenceClassification, + LlamaModel, + LlamaPreTrainedModel, + ) from .models.longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, @@ -6470,6 +7161,15 @@ OwlViTTextModel, OwlViTVisionModel, ) + from .models.patchtsmixer import ( + PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST, + PatchTSMixerForPrediction, + PatchTSMixerForPretraining, + PatchTSMixerForRegression, + PatchTSMixerForTimeSeriesClassification, + PatchTSMixerModel, + PatchTSMixerPreTrainedModel, + ) from .models.patchtst import ( PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST, PatchTSTForClassification, @@ -6573,7 +7273,12 @@ QDQBertPreTrainedModel, load_tf_weights_in_qdqbert, ) - from .models.rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration + from .models.rag import ( + RagModel, + RagPreTrainedModel, + RagSequenceForGeneration, + RagTokenForGeneration, + ) from .models.realm import ( REALM_PRETRAINED_MODEL_ARCHIVE_LIST, RealmEmbedder, @@ -6736,7 +7441,10 @@ Speech2TextModel, Speech2TextPreTrainedModel, ) - from .models.speech_to_text_2 import Speech2Text2ForCausalLM, Speech2Text2PreTrainedModel + from .models.speech_to_text_2 import ( + Speech2Text2ForCausalLM, + Speech2Text2PreTrainedModel, + ) from .models.speecht5 import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechT5ForSpeechToSpeech, @@ -6839,7 +7547,11 @@ TimesformerPreTrainedModel, ) from .models.timm_backbone import TimmBackbone - from .models.trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel + from .models.trocr import ( + TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, + TrOCRForCausalLM, + TrOCRPreTrainedModel, + ) from .models.tvlt import ( TVLT_PRETRAINED_MODEL_ARCHIVE_LIST, TvltForAudioVisualClassification, @@ -6880,7 +7592,10 @@ UniSpeechSatPreTrainedModel, ) from .models.univnet import UNIVNET_PRETRAINED_MODEL_ARCHIVE_LIST, UnivNetModel - from .models.upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel + from .models.upernet import ( + UperNetForSemanticSegmentation, + UperNetPreTrainedModel, + ) from .models.videomae import ( VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST, VideoMAEForPreTraining, @@ -7005,7 +7720,12 @@ XCLIPTextModel, XCLIPVisionModel, ) - from .models.xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel + from .models.xglm import ( + XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, + XGLMForCausalLM, + XGLMModel, + XGLMPreTrainedModel, + ) from .models.xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, @@ -7142,7 +7862,12 @@ tf_top_k_top_p_filtering, ) from .keras_callbacks import KerasMetricCallback, PushToHubCallback - from .modeling_tf_utils import TFPreTrainedModel, TFSequenceSummary, TFSharedEmbeddings, shape_list + from .modeling_tf_utils import ( + TFPreTrainedModel, + TFSequenceSummary, + TFSharedEmbeddings, + shape_list, + ) # TensorFlow model imports from .models.albert import ( @@ -7273,7 +7998,11 @@ TFConvBertModel, TFConvBertPreTrainedModel, ) - from .models.convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel + from .models.convnext import ( + TFConvNextForImageClassification, + TFConvNextModel, + TFConvNextPreTrainedModel, + ) from .models.convnextv2 import ( TFConvNextV2ForImageClassification, TFConvNextV2Model, @@ -7452,7 +8181,11 @@ TFLayoutLMv3Model, TFLayoutLMv3PreTrainedModel, ) - from .models.led import TFLEDForConditionalGeneration, TFLEDModel, TFLEDPreTrainedModel + from .models.led import ( + TFLEDForConditionalGeneration, + TFLEDModel, + TFLEDPreTrainedModel, + ) from .models.longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, @@ -7472,8 +8205,16 @@ TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) - from .models.marian import TFMarianModel, TFMarianMTModel, TFMarianPreTrainedModel - from .models.mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel + from .models.marian import ( + TFMarianModel, + TFMarianMTModel, + TFMarianPreTrainedModel, + ) + from .models.mbart import ( + TFMBartForConditionalGeneration, + TFMBartModel, + TFMBartPreTrainedModel, + ) from .models.mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, @@ -7505,7 +8246,11 @@ TFMPNetModel, TFMPNetPreTrainedModel, ) - from .models.mt5 import TFMT5EncoderModel, TFMT5ForConditionalGeneration, TFMT5Model + from .models.mt5 import ( + TFMT5EncoderModel, + TFMT5ForConditionalGeneration, + TFMT5Model, + ) from .models.openai import ( TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, TFOpenAIGPTDoubleHeadsModel, @@ -7516,8 +8261,17 @@ TFOpenAIGPTPreTrainedModel, ) from .models.opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel - from .models.pegasus import TFPegasusForConditionalGeneration, TFPegasusModel, TFPegasusPreTrainedModel - from .models.rag import TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration + from .models.pegasus import ( + TFPegasusForConditionalGeneration, + TFPegasusModel, + TFPegasusPreTrainedModel, + ) + from .models.rag import ( + TFRagModel, + TFRagPreTrainedModel, + TFRagSequenceForGeneration, + TFRagTokenForGeneration, + ) from .models.regnet import ( TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, @@ -7621,8 +8375,16 @@ ) from .models.vision_encoder_decoder import TFVisionEncoderDecoderModel from .models.vision_text_dual_encoder import TFVisionTextDualEncoderModel - from .models.vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel - from .models.vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel + from .models.vit import ( + TFViTForImageClassification, + TFViTModel, + TFViTPreTrainedModel, + ) + from .models.vit_mae import ( + TFViTMAEForPreTraining, + TFViTMAEModel, + TFViTMAEPreTrainedModel, + ) from .models.wav2vec2 import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWav2Vec2ForCTC, @@ -7677,7 +8439,12 @@ ) # Optimization - from .optimization_tf import AdamWeightDecay, GradientAccumulator, WarmUp, create_optimizer + from .optimization_tf import ( + AdamWeightDecay, + GradientAccumulator, + WarmUp, + create_optimizer, + ) # Trainer from .trainer_tf import TFTrainer @@ -7694,7 +8461,11 @@ except OptionalDependencyNotAvailable: from .utils.dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects import * else: - from .models.pop2piano import Pop2PianoFeatureExtractor, Pop2PianoProcessor, Pop2PianoTokenizer + from .models.pop2piano import ( + Pop2PianoFeatureExtractor, + Pop2PianoProcessor, + Pop2PianoTokenizer, + ) try: if not is_flax_available(): @@ -7810,7 +8581,11 @@ FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) - from .models.bloom import FlaxBloomForCausalLM, FlaxBloomModel, FlaxBloomPreTrainedModel + from .models.bloom import ( + FlaxBloomForCausalLM, + FlaxBloomModel, + FlaxBloomPreTrainedModel, + ) from .models.clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, @@ -7841,11 +8616,31 @@ FlaxElectraPreTrainedModel, ) from .models.encoder_decoder import FlaxEncoderDecoderModel - from .models.gpt2 import FlaxGPT2LMHeadModel, FlaxGPT2Model, FlaxGPT2PreTrainedModel - from .models.gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel - from .models.gptj import FlaxGPTJForCausalLM, FlaxGPTJModel, FlaxGPTJPreTrainedModel - from .models.longt5 import FlaxLongT5ForConditionalGeneration, FlaxLongT5Model, FlaxLongT5PreTrainedModel - from .models.marian import FlaxMarianModel, FlaxMarianMTModel, FlaxMarianPreTrainedModel + from .models.gpt2 import ( + FlaxGPT2LMHeadModel, + FlaxGPT2Model, + FlaxGPT2PreTrainedModel, + ) + from .models.gpt_neo import ( + FlaxGPTNeoForCausalLM, + FlaxGPTNeoModel, + FlaxGPTNeoPreTrainedModel, + ) + from .models.gptj import ( + FlaxGPTJForCausalLM, + FlaxGPTJModel, + FlaxGPTJPreTrainedModel, + ) + from .models.longt5 import ( + FlaxLongT5ForConditionalGeneration, + FlaxLongT5Model, + FlaxLongT5PreTrainedModel, + ) + from .models.marian import ( + FlaxMarianModel, + FlaxMarianMTModel, + FlaxMarianPreTrainedModel, + ) from .models.mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, @@ -7853,11 +8648,27 @@ FlaxMBartModel, FlaxMBartPreTrainedModel, ) - from .models.mt5 import FlaxMT5EncoderModel, FlaxMT5ForConditionalGeneration, FlaxMT5Model + from .models.mt5 import ( + FlaxMT5EncoderModel, + FlaxMT5ForConditionalGeneration, + FlaxMT5Model, + ) from .models.opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel - from .models.pegasus import FlaxPegasusForConditionalGeneration, FlaxPegasusModel, FlaxPegasusPreTrainedModel - from .models.regnet import FlaxRegNetForImageClassification, FlaxRegNetModel, FlaxRegNetPreTrainedModel - from .models.resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel + from .models.pegasus import ( + FlaxPegasusForConditionalGeneration, + FlaxPegasusModel, + FlaxPegasusPreTrainedModel, + ) + from .models.regnet import ( + FlaxRegNetForImageClassification, + FlaxRegNetModel, + FlaxRegNetPreTrainedModel, + ) + from .models.resnet import ( + FlaxResNetForImageClassification, + FlaxResNetModel, + FlaxResNetPreTrainedModel, + ) from .models.roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, @@ -7888,10 +8699,19 @@ FlaxRoFormerPreTrainedModel, ) from .models.speech_encoder_decoder import FlaxSpeechEncoderDecoderModel - from .models.t5 import FlaxT5EncoderModel, FlaxT5ForConditionalGeneration, FlaxT5Model, FlaxT5PreTrainedModel + from .models.t5 import ( + FlaxT5EncoderModel, + FlaxT5ForConditionalGeneration, + FlaxT5Model, + FlaxT5PreTrainedModel, + ) from .models.vision_encoder_decoder import FlaxVisionEncoderDecoderModel from .models.vision_text_dual_encoder import FlaxVisionTextDualEncoderModel - from .models.vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel + from .models.vit import ( + FlaxViTForImageClassification, + FlaxViTModel, + FlaxViTPreTrainedModel, + ) from .models.wav2vec2 import ( FlaxWav2Vec2ForCTC, FlaxWav2Vec2ForPreTraining, @@ -7904,7 +8724,11 @@ FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) - from .models.xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel + from .models.xglm import ( + FlaxXGLMForCausalLM, + FlaxXGLMModel, + FlaxXGLMPreTrainedModel, + ) from .models.xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, diff --git a/src/transformers/models/__init__.py b/src/transformers/models/__init__.py index 9d2358b9403a75..41796f9766c397 100644 --- a/src/transformers/models/__init__.py +++ b/src/transformers/models/__init__.py @@ -158,6 +158,7 @@ opt, owlv2, owlvit, + patchtsmixer, patchtst, pegasus, pegasus_x, diff --git a/src/transformers/models/auto/configuration_auto.py b/src/transformers/models/auto/configuration_auto.py index 9dfdeb525e26c8..1d1a64a36a7f83 100755 --- a/src/transformers/models/auto/configuration_auto.py +++ b/src/transformers/models/auto/configuration_auto.py @@ -164,6 +164,7 @@ ("opt", "OPTConfig"), ("owlv2", "Owlv2Config"), ("owlvit", "OwlViTConfig"), + ("patchtsmixer", "PatchTSMixerConfig"), ("patchtst", "PatchTSTConfig"), ("pegasus", "PegasusConfig"), ("pegasus_x", "PegasusXConfig"), @@ -380,6 +381,7 @@ ("opt", "OPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("owlv2", "OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("owlvit", "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), + ("patchtsmixer", "PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("patchtst", "PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("pegasus", "PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("pegasus_x", "PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP"), @@ -616,6 +618,7 @@ ("opt", "OPT"), ("owlv2", "OWLv2"), ("owlvit", "OWL-ViT"), + ("patchtsmixer", "PatchTSMixer"), ("patchtst", "PatchTST"), ("pegasus", "Pegasus"), ("pegasus_x", "PEGASUS-X"), diff --git a/src/transformers/models/auto/modeling_auto.py b/src/transformers/models/auto/modeling_auto.py index 2f2ec050a1cafb..ef9c9d0354cd3f 100755 --- a/src/transformers/models/auto/modeling_auto.py +++ b/src/transformers/models/auto/modeling_auto.py @@ -18,7 +18,12 @@ from collections import OrderedDict from ...utils import logging -from .auto_factory import _BaseAutoBackboneClass, _BaseAutoModelClass, _LazyAutoMapping, auto_class_update +from .auto_factory import ( + _BaseAutoBackboneClass, + _BaseAutoModelClass, + _LazyAutoMapping, + auto_class_update, +) from .configuration_auto import CONFIG_MAPPING_NAMES @@ -157,6 +162,7 @@ ("opt", "OPTModel"), ("owlv2", "Owlv2Model"), ("owlvit", "OwlViTModel"), + ("patchtsmixer", "PatchTSMixerModel"), ("patchtst", "PatchTSTModel"), ("pegasus", "PegasusModel"), ("pegasus_x", "PegasusXModel"), @@ -483,7 +489,10 @@ ("convnextv2", "ConvNextV2ForImageClassification"), ("cvt", "CvtForImageClassification"), ("data2vec-vision", "Data2VecVisionForImageClassification"), - ("deit", ("DeiTForImageClassification", "DeiTForImageClassificationWithTeacher")), + ( + "deit", + ("DeiTForImageClassification", "DeiTForImageClassificationWithTeacher"), + ), ("dinat", "DinatForImageClassification"), ("dinov2", "Dinov2ForImageClassification"), ( @@ -496,7 +505,10 @@ ("efficientnet", "EfficientNetForImageClassification"), ("focalnet", "FocalNetForImageClassification"), ("imagegpt", "ImageGPTForImageClassification"), - ("levit", ("LevitForImageClassification", "LevitForImageClassificationWithTeacher")), + ( + "levit", + ("LevitForImageClassification", "LevitForImageClassificationWithTeacher"), + ), ("mobilenet_v1", "MobileNetV1ForImageClassification"), ("mobilenet_v2", "MobileNetV2ForImageClassification"), ("mobilevit", "MobileViTForImageClassification"), @@ -1140,12 +1152,14 @@ MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING_NAMES = OrderedDict( [ + ("patchtsmixer", "PatchTSMixerForTimeSeriesClassification"), ("patchtst", "PatchTSTForClassification"), ] ) MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING_NAMES = OrderedDict( [ + ("patchtsmixer", "PatchTSMixerForRegression"), ("patchtst", "PatchTSTForRegression"), ] ) @@ -1305,7 +1319,9 @@ class AutoModelForSeq2SeqLM(_BaseAutoModelClass): AutoModelForSeq2SeqLM = auto_class_update( - AutoModelForSeq2SeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" + AutoModelForSeq2SeqLM, + head_doc="sequence-to-sequence language modeling", + checkpoint_for_example="t5-base", ) diff --git a/src/transformers/models/patchtsmixer/__init__.py b/src/transformers/models/patchtsmixer/__init__.py new file mode 100644 index 00000000000000..63f433791e1fe8 --- /dev/null +++ b/src/transformers/models/patchtsmixer/__init__.py @@ -0,0 +1,69 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +# rely on isort to merge the imports +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_patchtsmixer": [ + "PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "PatchTSMixerConfig", + ], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_patchtsmixer"] = [ + "PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST", + "PatchTSMixerPreTrainedModel", + "PatchTSMixerModel", + "PatchTSMixerForPretraining", + "PatchTSMixerForPrediction", + "PatchTSMixerForTimeSeriesClassification", + "PatchTSMixerForRegression", + ] + + +if TYPE_CHECKING: + from .configuration_patchtsmixer import ( + PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP, + PatchTSMixerConfig, + ) + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_patchtsmixer import ( + PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST, + PatchTSMixerForPrediction, + PatchTSMixerForPretraining, + PatchTSMixerForRegression, + PatchTSMixerForTimeSeriesClassification, + PatchTSMixerModel, + PatchTSMixerPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/src/transformers/models/patchtsmixer/configuration_patchtsmixer.py b/src/transformers/models/patchtsmixer/configuration_patchtsmixer.py new file mode 100644 index 00000000000000..cd756bc942a66e --- /dev/null +++ b/src/transformers/models/patchtsmixer/configuration_patchtsmixer.py @@ -0,0 +1,243 @@ +# coding=utf-8 +# Copyright 2023 IBM and HuggingFace Inc. team. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PatchTSMixer model configuration""" + +from typing import List, Optional, Union + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "ibm/patchtsmixer-etth1-pretrain": "https://huggingface.co/ibm/patchtsmixer-etth1-pretrain/resolve/main/config.json", +} + + +class PatchTSMixerConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`PatchTSMixerModel`]. It is used to instantiate a + PatchTSMixer model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the PatchTSMixer + [ibm/patchtsmixer-etth1-pretrain](https://huggingface.co/ibm/patchtsmixer-etth1-pretrain) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + context_length (`int`, *optional*, defaults to 32): + The context/history length for the input sequence. + patch_len (`int`, *optional*, defaults to 8): + The patch length for the input sequence. + num_input_channels (`int`, *optional*, defaults to 1): + Number of input variates. For Univariate, set it to 1. + patch_stride (`int`, *optional*, defaults to 8): + Determines the overlap between two consecutive patches. Set it to patch_length (or greater), if we want + non-overlapping patches. + num_parallel_samples (`int`, *optional*, defaults to 100): + The number of samples to generate in parallel for probabilistic forecast. + + + d_model (`int`, *optional*, defaults to 8): + Hidden dimension of the model. Recommended to set it as a multiple of patch_length (i.e. 2-5X of + patch_len). Larger value indicates more complex model. + expansion_factor (`int`, *optional*, defaults to 2): + Expansion factor to use inside MLP. Recommended range is 2-5. Larger value indicates more complex model. + num_layers (`int`, *optional*, defaults to 3): + Number of layers to use. Recommended range is 3-15. Larger value indicates more complex model. + dropout (`float`, *optional*, defaults to 0.2): + The dropout probability the `PatchTSMixer` backbone. Recommended range is 0.2-0.7 + mode (`str`, *optional*, defaults to `"common_channel"`): + Mixer Mode. Determines how to process the channels. Allowed values: "common_channel", "mix_channel". In + "common_channel" mode, we follow Channel-independent modelling with no explicit channel-mixing. Channel + mixing happens in an implicit manner via shared weights across channels. (preferred first approach) In + "mix_channel" mode, we follow explicit channel-mixing in addition to patch and feature mixer. (preferred + approach when channel correlations are very important to model) + gated_attn (`bool`, *optional*, defaults to `True`): + Enable Gated Attention. + norm_mlp (`str`, *optional*, defaults to `"LayerNorm"`): + Normalization layer (BatchNorm or LayerNorm). + self_attn (`bool`, *optional*, defaults to `False`): + Enable Tiny self attention across patches. This can be enabled when the output of Vanilla PatchTSMixer with + gated attention is not satisfactory. Enabling this leads to explicit pair-wise attention and modelling + across patches. + self_attn_heads (`int`, *optional*, defaults to 1): + Number of self-attention heads. Works only when `self_attn` is set to `True`. + use_positional_encoding (`bool`, *optional*, defaults to `False`): + Enable the use of positional embedding for the tiny self-attention layers. Works only when `self_attn` is + set to `True`. + positional_encoding_type (`str`, *optional*, defaults to `"sincos"`): + Positional encodings. Options `"random"` and `"sincos"` are supported. Works only when + `use_positional_encoding` is set to `True` + scaling (`string` or `bool`, *optional*, defaults to `"std"`): + Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the + scaler is set to "mean". + loss (`string`, *optional*, defaults to `"mse"`): + The loss function for the model corresponding to the `distribution_output` head. For parametric + distributions it is the negative log likelihood ("nll") and for point estimates it is the mean squared + error "mse". + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated normal weight initialization distribution. + post_init (`bool`, *optional*, defaults to `False`): + Whether to use custom weight initialization from `transformers` library, or the default initialization in + `PyTorch`. Setting it to `False` performs `PyTorch` weight initialization. + norm_eps (`float`, *optional*, defaults to 1e-05): + A value added to the denominator for numerical stability of normalization. + + + mask_type (`str`, *optional*, defaults to `"random"`): + Type of masking to use for Masked Pretraining mode. Allowed values are "random", "forecast". In Random + masking, points are masked randomly. In Forecast masking, points are masked towards the end. + random_mask_ratio (`float`, *optional*, defaults to 0.5): + Masking ratio to use when `mask_type` is `random`. Higher value indicates more masking. + num_forecast_mask_patches (`int` or `list`, *optional*, defaults to `[2]`): + Number of patches to be masked at the end of each batch sample. If it is an integer, all the samples in the + batch will have the same number of masked patches. If it is a list, samples in the batch will be randomly + masked by numbers defined in the list. This argument is only used for forecast pretraining. + mask_value (`float`, *optional*, defaults to `0.0`): + Mask value to use. + masked_loss (`bool`, *optional*, defaults to `True`): + Whether to compute pretraining loss only at the masked portions, or on the entire output. + channel_consistent_masking (`bool`, *optional*, defaults to `True`): + When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary + across channels. + unmasked_channel_indices (`list`, *optional*): + Channels that are not masked during pretraining. + + + + head_dropout (`float`, *optional*, defaults to 0.2): + The dropout probability the `PatchTSMixer` head. + distribution_output (`string`, *optional*, defaults to `"student_t"`): + The distribution emission head for the model when loss is "nll". Could be either "student_t", "normal" or + "negative_binomial". + prediction_length (`int`, *optional*, defaults to 16): + Number of time steps to forecast for a forecasting task. Also known as the Forecast Horizon. + prediction_channel_indices (`list`, *optional*): + List of channel indices to forecast. If None, forecast all channels. Target data is expected to have all + channels and we explicitly filter the channels in prediction and target before loss computation. + num_targets (`int`, *optional*, defaults to 3): + Number of targets (dimensionality of the regressed variable) for a regression task. + output_range (`list`, *optional*): + Output range to restrict for the regression task. Defaults to None. + head_aggregation (`str`, *optional*, defaults to `"max_pool"`): + Aggregation mode to enable for classification or regression task. Allowed values are `None`, "use_last", + "max_pool", "avg_pool". + + Example: + + ```python + >>> from transformers import PatchTSMixerConfig, PatchTSMixerModel + + >>> # Initializing a default PatchTSMixer configuration + >>> configuration = PatchTSMixerConfig() + + >>> # Randomly initializing a model (with random weights) from the configuration + >>> model = PatchTSMixerModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "patchtsmixer" + attribute_map = { + "hidden_size": "d_model", + "num_hidden_layers": "num_layers", + } + + def __init__( + self, + # Time series specific configuration + context_length: int = 32, + patch_len: int = 8, + num_input_channels: int = 1, + patch_stride: int = 8, + num_parallel_samples: int = 100, + # General model configuration + d_model: int = 8, + expansion_factor: int = 2, + num_layers: int = 3, + dropout: float = 0.2, + mode: str = "common_channel", + gated_attn: bool = True, + norm_mlp: str = "LayerNorm", + self_attn: bool = False, + self_attn_heads: int = 1, + use_positional_encoding: bool = False, + positional_encoding_type: str = "sincos", + scaling: Optional[Union[str, bool]] = "std", + loss: str = "mse", + init_std: float = 0.02, + post_init: bool = False, + norm_eps: float = 1e-5, + # Pretrain model configuration + mask_type: str = "random", + random_mask_ratio: float = 0.5, + num_forecast_mask_patches: Optional[Union[List[int], int]] = [2], + mask_value: int = 0, + masked_loss: bool = True, + channel_consistent_masking: bool = True, + unmasked_channel_indices: Optional[List[int]] = None, + # General head configuration + head_dropout: float = 0.2, + distribution_output: str = "student_t", + # Prediction head configuration + prediction_length: int = 16, + prediction_channel_indices: list = None, + # Classification/Regression configuration + num_targets: int = 3, + output_range: list = None, + head_aggregation: str = "max_pool", + **kwargs, + ): + self.num_input_channels = num_input_channels + self.context_length = context_length + self.patch_length = patch_len + self.patch_stride = patch_stride + self.d_model = d_model + self.expansion_factor = expansion_factor + self.num_layers = num_layers + self.dropout = dropout + self.mode = mode + self.gated_attn = gated_attn + self.norm_mlp = norm_mlp + self.scaling = scaling + self.head_dropout = head_dropout + self.num_patches = (max(context_length, patch_len) - patch_len) // patch_stride + 1 + self.mask_type = mask_type + self.random_mask_ratio = random_mask_ratio + self.num_forecast_mask_patches = num_forecast_mask_patches + self.mask_value = mask_value + self.channel_consistent_masking = channel_consistent_masking + self.masked_loss = masked_loss + self.patch_last = True + self.use_positional_encoding = use_positional_encoding + self.positional_encoding_type = positional_encoding_type + self.prediction_length = prediction_length + self.prediction_channel_indices = prediction_channel_indices + self.num_targets = num_targets + self.output_range = output_range + self.head_aggregation = head_aggregation + self.self_attn = self_attn + self.self_attn_heads = self_attn_heads + self.init_std = init_std + self.post_init = post_init + self.distribution_output = distribution_output + self.loss = loss + self.num_parallel_samples = num_parallel_samples + self.unmasked_channel_indices = unmasked_channel_indices + self.norm_eps = norm_eps + super().__init__(**kwargs) diff --git a/src/transformers/models/patchtsmixer/modeling_patchtsmixer.py b/src/transformers/models/patchtsmixer/modeling_patchtsmixer.py new file mode 100644 index 00000000000000..c838eb177f8b12 --- /dev/null +++ b/src/transformers/models/patchtsmixer/modeling_patchtsmixer.py @@ -0,0 +1,2175 @@ +# coding=utf-8 +# Copyright 2023 IBM and HuggingFace Inc. team. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch PatchTSMixer model.""" + +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +import torch.nn as nn + +from transformers.modeling_utils import PreTrainedModel +from transformers.utils import ModelOutput + +from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput +from ...utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_patchtsmixer import PatchTSMixerConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "PatchTSMixerConfig" + + +PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "ibm/patchtsmixer-etth1-pretrain", + # See all PatchTSMixer models at https://huggingface.co/models?filter=patchtsmixer +] + + +PATCHTSMIXER_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`PatchTSMixerConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. + mask_input (`bool`, *optional*, defaults to `False`): + If True, Masking will be enabled. False otherwise. +""" + +PATCHTSMIXER_INPUTS_DOCSTRING = r""" + Args: + past_values (`torch.FloatTensor` of shape `(batch_size, seq_length, num_input_channels)`): + Context values of the time series. For a pretraining task, this denotes the input time series to predict + the masked portion. For a forecasting task, this denotes the history/past time series values. Similarly, + for classification or regression tasks, it denotes the appropriate context values of the time series. + + For univariate time series, `num_input_channels` dimension should be 1. For multivariate time series, it is + greater than 1. + + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. + + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class PatchTSMixerGatedAttention(nn.Module): + """ + Module that applies gated attention to input data. + + Args: + in_size (`int`): The input size. + out_size (`int`): The output size. + """ + + def __init__(self, in_size: int, out_size: int): + super().__init__() + self.attn_layer = nn.Linear(in_size, out_size) + self.attn_softmax = nn.Softmax(dim=-1) + + def forward(self, inputs): + attn_weight = self.attn_softmax(self.attn_layer(inputs)) + inputs = inputs * attn_weight + return inputs + + +# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTBatchNorm with PatchTST->PatchTSMixer +class PatchTSMixerBatchNorm(nn.Module): + """ + Compute batch normalization over the sequence length (time) dimension. + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__() + self.batchnorm = nn.BatchNorm1d(config.d_model, eps=config.norm_eps) + + def forward(self, inputs: torch.Tensor): + """ + Parameters: + inputs (`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`): + input for Batch norm calculation + Returns: + `torch.Tensor` of shape `(batch_size, sequence_length, d_model)` + """ + output = inputs.transpose(1, 2) # output: (batch_size, d_model, sequence_length) + output = self.batchnorm(output) + return output.transpose(1, 2) + + +class PatchTSMixerPositionalEncoding(nn.Module): + """ + Class for positional encoding + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__() + # positional encoding: [num_patches x d_model] + if config.use_positional_encoding: + self.position_enc = self._init_pe(config) + else: + self.position_enc = nn.Parameter(torch.zeros(config.num_patches, config.d_model)) + + @staticmethod + def _init_pe(config: PatchTSMixerConfig) -> nn.Parameter: + # Positional encoding + if config.positional_encoding_type == "random": + position_enc = nn.Parameter(torch.randn(config.num_patches, config.d_model), requires_grad=True) + elif config.positional_encoding_type == "sincos": + position_enc = torch.zeros(config.num_patches, config.d_model) + position = torch.arange(0, config.num_patches).unsqueeze(1) + div_term = torch.exp(torch.arange(0, config.d_model, 2) * -(math.log(10000.0) / config.d_model)) + position_enc[:, 0::2] = torch.sin(position * div_term) + position_enc[:, 1::2] = torch.cos(position * div_term) + position_enc = position_enc - position_enc.mean() + position_enc = position_enc / (position_enc.std() * 10) + position_enc = nn.Parameter(position_enc, requires_grad=False) + else: + raise ValueError( + f"{config.positional_encoding_type} is not a valid positional encoder. Available types are 'random' and 'sincos'." + ) + return position_enc + + def forward(self, patch_input: torch.Tensor): + # hidden_state: [bs x num_channels x num_patches x d_model] + hidden_state = patch_input + self.position_enc + return hidden_state + + +class PatchTSMixerNormLayer(nn.Module): + """Normalization block + + Args: + config (`PatchTSMixerConfig`, *required*): + Configuration. + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__() + + self.norm_mlp = config.norm_mlp + + if "batch" in config.norm_mlp.lower(): + self.norm = PatchTSMixerBatchNorm(config) + else: + self.norm = nn.LayerNorm(config.d_model, eps=config.norm_eps) + + def forward(self, inputs: torch.Tensor): + """ + Args: + inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`): + Input to the normalization layer. + Returns: + `torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))` + """ + if "batch" in self.norm_mlp.lower(): + # reshape the data + inputs_reshaped = torch.reshape( + inputs, + ( + inputs.shape[0] * inputs.shape[1], + inputs.shape[2], + inputs.shape[3], + ), + ) # inputs_reshaped: [batch_size*num_channels, num_patches, d_model] + + # inputs_reshaped: [batch_size*num_channels, num_patches, d_model] + inputs_reshaped = self.norm(inputs_reshaped) + + # put back data to the original shape + inputs = torch.reshape(inputs_reshaped, inputs.shape) + + else: + inputs = self.norm(inputs) + + return inputs + + +class PatchTSMixerMLP(nn.Module): + def __init__(self, in_features, out_features, config): + super().__init__() + num_hidden = in_features * config.expansion_factor + self.fc1 = nn.Linear(in_features, num_hidden) + self.dropout1 = nn.Dropout(config.dropout) + self.fc2 = nn.Linear(num_hidden, out_features) + self.dropout2 = nn.Dropout(config.dropout) + + def forward(self, inputs: torch.Tensor): + """ + Args: + inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`): + Input to the MLP layer. + Returns: + `torch.Tensor` of the same shape as `inputs` + """ + inputs = self.dropout1(nn.functional.gelu(self.fc1(inputs))) + inputs = self.fc2(inputs) + inputs = self.dropout2(inputs) + return inputs + + +class PatchTSMixerChannelFeatureMixerBlock(nn.Module): + """This module mixes the features in the channel dimension. + + Args: + config (`PatchTSMixerConfig`, *required*): + Configuration. + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__() + + self.norm = PatchTSMixerNormLayer(config) + self.gated_attn = config.gated_attn + self.mlp = PatchTSMixerMLP( + in_features=config.num_input_channels, + out_features=config.num_input_channels, + config=config, + ) + + if config.gated_attn: + self.gating_block = PatchTSMixerGatedAttention( + in_size=config.num_input_channels, out_size=config.num_input_channels + ) + + def forward(self, inputs: torch.Tensor): + """ + Args: + inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`): + input to the MLP layer + Returns: + `torch.Tensor` of the same shape as `inputs` + """ + residual = inputs + inputs = self.norm(inputs) + + inputs = inputs.permute(0, 3, 2, 1) + + if self.gated_attn: + inputs = self.gating_block(inputs) + + inputs = self.mlp(inputs) + + inputs = inputs.permute(0, 3, 2, 1) + + out = inputs + residual + return out + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PatchTSMixer +class PatchTSMixerAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + config: Optional[PatchTSMixerConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.reshape(*proj_shape) + value_states = value_states.reshape(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +class PatchMixerBlock(nn.Module): + """This module mixes the patch dimension. + + Args: + config (`PatchTSMixerConfig`, *required*): + Configuration. + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__() + + self.norm = PatchTSMixerNormLayer(config) + + self.self_attn = config.self_attn + self.gated_attn = config.gated_attn + + self.mlp = PatchTSMixerMLP( + in_features=config.num_patches, + out_features=config.num_patches, + config=config, + ) + + if config.gated_attn: + self.gating_block = PatchTSMixerGatedAttention(in_size=config.num_patches, out_size=config.num_patches) + + if config.self_attn: + self.self_attn_layer = PatchTSMixerAttention( + embed_dim=config.d_model, + num_heads=config.self_attn_heads, + dropout=config.dropout, + ) + self.norm_attn = PatchTSMixerNormLayer(config) + + def forward(self, hidden_state): + """ + Args: + hidden_state (`torch.Tensor`): Input tensor. + + Returns: + `torch.Tensor`: Transformed tensor. + """ + residual = hidden_state + + hidden_state = self.norm(hidden_state) + + if self.self_attn: + batch_size, n_vars, num_patches, d_model = hidden_state.shape + hidden_state_reshaped = hidden_state.reshape(batch_size * n_vars, num_patches, d_model) + + x_attn, _, _ = self.self_attn_layer(hidden_state_reshaped, output_attentions=False) + x_attn = x_attn.reshape(batch_size, n_vars, num_patches, d_model) + + # Transpose so that num_patches is the last dimension + hidden_state = hidden_state.transpose(2, 3) + hidden_state = self.mlp(hidden_state) + + if self.gated_attn: + hidden_state = self.gating_block(hidden_state) + + # Transpose back + hidden_state = hidden_state.transpose(2, 3) + + if self.self_attn: + hidden_state = self.norm_attn(hidden_state + x_attn) + + out = hidden_state + residual + return out + + +class FeatureMixerBlock(nn.Module): + """This module mixes the hidden feature dimension. + + Args: + config (`PatchTSMixerConfig`, *required*): + Configuration. + + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__() + + self.norm = PatchTSMixerNormLayer(config) + + self.gated_attn = config.gated_attn + + self.mlp = PatchTSMixerMLP( + in_features=config.d_model, + out_features=config.d_model, + config=config, + ) + + if config.gated_attn: + self.gating_block = PatchTSMixerGatedAttention(in_size=config.d_model, out_size=config.d_model) + + def forward(self, hidden: torch.Tensor): + """ + Args: + hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`): + Input tensor to the layer. + + Returns: + `torch.Tensor`: Transformed tensor. + """ + residual = hidden + hidden = self.norm(hidden) + hidden = self.mlp(hidden) + + if self.gated_attn: + hidden = self.gating_block(hidden) + + out = hidden + residual + return out + + +class PatchTSMixerLayer(nn.Module): + """ + The `PatchTSMixer` layer that does all three kinds of mixing. + + Args: + config (`PatchTSMixerConfig`, *required*): + Configuration. + + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__() + + self.patch_mixer = PatchMixerBlock(config=config) + self.feature_mixer = FeatureMixerBlock(config=config) + + self.mode = config.mode + + if config.mode == "mix_channel": + self.channel_feature_mixer = PatchTSMixerChannelFeatureMixerBlock(config=config) + + def forward(self, hidden: torch.Tensor): + """ + Args: + hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`): + Input tensor to the layer. + + Returns: + `torch.Tensor`: Transformed tensor. + """ + if self.mode == "mix_channel": + hidden = self.channel_feature_mixer(hidden) + + hidden = self.patch_mixer(hidden) + hidden = self.feature_mixer(hidden) # hidden: (batch_size x num_patches x d_model) + return hidden + + +class PatchTSMixerBlock(nn.Module): + """The main computing framework of the `PatchTSMixer` model. + + Args: + config (`PatchTSMixerConfig`, *required*): + Configuration. + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__() + + num_layers = config.num_layers + + self.mixers = nn.ModuleList([PatchTSMixerLayer(config=config) for _ in range(num_layers)]) + + def forward(self, hidden_state, output_hidden_states: bool = False): + """ + Args: + hidden_state (`torch.Tensor`): The input tensor. + output_hidden_states (`bool`, *optional*, defaults to False.): + Whether to output the hidden states as well. + + Returns: + `torch.Tensor`: The embedding. `list`: List of all hidden states if `output_hidden_states` is set to + `True`. + """ + all_hidden_states = [] + + embedding = hidden_state + + for mod in self.mixers: + embedding = mod(embedding) + if output_hidden_states: + all_hidden_states.append(embedding) + + if output_hidden_states: + return embedding, all_hidden_states + else: + return embedding, None + + +class PatchTSMixerForPredictionHead(nn.Module): + """Prediction Head for Forecasting + + Args: + config (`PatchTSMixerConfig`, *required*): Configuration. + """ + + def __init__(self, config: PatchTSMixerConfig, distribution_output=None): + super().__init__() + + self.prediction_channel_indices = config.prediction_channel_indices + + if self.prediction_channel_indices is not None: + self.prediction_channel_indices.sort() + + self.dropout_layer = nn.Dropout(config.head_dropout) + if distribution_output is None: + self.base_forecast_block = nn.Linear((config.num_patches * config.d_model), config.prediction_length) + else: + self.base_forecast_block = distribution_output.get_parameter_projection( + config.num_patches * config.d_model + ) + + self.flatten = nn.Flatten(start_dim=-2) + + def forward(self, hidden_features): + """ + + Args: + hidden_features (`torch.Tensor` of shape `(batch_size, num_patch, d_model)` in `flatten` mode + or `(batch_size, n_vars, num_patch, d_model)` in `common_channel`/`mix_channel` mode.): Input hidden + features. + + Returns: + `torch.Tensor` of shape `(batch_size, prediction_length, nvars)`. + + """ + + hidden_features = self.flatten(hidden_features) # [batch_size x n_vars x num_patch * d_model] + hidden_features = self.dropout_layer(hidden_features) # [batch_size x n_vars x num_patch * d_model] + forecast = self.base_forecast_block(hidden_features) # [batch_size x n_vars x prediction_length] + if isinstance(forecast, tuple): + forecast = tuple(z.transpose(-1, -2) for z in forecast) + else: + forecast = forecast.transpose(-1, -2) # [batch_size x prediction_length x n_vars] + + if self.prediction_channel_indices is not None: + if isinstance(forecast, tuple): + forecast = tuple(z[..., self.prediction_channel_indices] for z in forecast) + else: + forecast = forecast[..., self.prediction_channel_indices] # [batch_size x prediction_length x n_vars] + + return forecast + + +class PatchTSMixerLinearHead(nn.Module): + """Linear head for Classification and Regression. + + Args: + config (`PatchTSMixerConfig`, *required*): + + """ + + def __init__(self, config: PatchTSMixerConfig, distribution_output=None): + super().__init__() + + self.head_aggregation = config.head_aggregation + self.output_range = config.output_range + + if config.head_aggregation is None: + mul_factor = config.num_patches + else: + mul_factor = 1 + self.distribution_output = distribution_output + if distribution_output is None: + self.projection = nn.Linear( + config.d_model * config.num_input_channels * mul_factor, + config.num_targets, + ) + else: + self.projection = distribution_output.get_parameter_projection( + config.d_model * config.num_input_channels * mul_factor + ) + + if config.head_aggregation is None: + self.flatten = nn.Flatten(start_dim=-3) + else: + self.flatten = nn.Flatten(start_dim=-2) + + self.dropout = nn.Dropout(config.head_dropout) + + def forward(self, hidden_features): + """ + Args: + hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode + or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden + features. + + Returns: + `torch.Tensor` of shape `(batch_size x num_targets)`. + """ + + # batch_size x d_model x num_patch or batch_size x n_vars x d_model x num_patch + hidden_features = hidden_features.transpose(-1, -2) + if self.head_aggregation == "use_last": + # batch_size x d_model (flatten) or # batch_size x n_vars x d_model (common_channel) + hidden_features = hidden_features[..., -1] + elif self.head_aggregation == "max_pool": + # batch_size x n_vars x d_model or batch_size x d_model + hidden_features = hidden_features.max(dim=-1).values + elif self.head_aggregation == "avg_pool": + # batch_size x n_vars x d_model or batch_size x d_model + hidden_features = hidden_features.mean(dim=-1) + + if self.flatten: + hidden_features = self.flatten(hidden_features) + hidden_features = self.dropout(hidden_features) + hidden_features = self.projection(hidden_features) # batch_size x num_targets + + if (self.distribution_output is None) and (self.output_range is not None): + hidden_features = ( + torch.sigmoid(hidden_features) * (self.output_range[1] - self.output_range[0]) + self.output_range[0] + ) + return hidden_features + + +class PatchTSMixerPreTrainedModel(PreTrainedModel): + # Weight initialization + config_class = PatchTSMixerConfig + base_model_prefix = "model" + main_input_name = "past_values" + supports_gradient_checkpointing = False + + def _init_weights(self, module): + """Initialize weights""" + if isinstance(module, PatchTSMixerPositionalEncoding): + # initialize positional encoding + if self.config.positional_encoding_type == "random": + nn.init.normal_(module.position_enc, mean=0.0, std=0.1) + elif isinstance(module, (nn.LayerNorm, nn.BatchNorm1d)): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, PatchTSMixerBatchNorm): + module.batchnorm.bias.data.zero_() + module.batchnorm.weight.data.fill_(1.0) + elif isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=self.config.init_std) + if module.bias is not None: + module.bias.data.zero_() + + +class PatchTSMixerPretrainHead(nn.Module): + """Pretraining head. + + Args: + config (`PatchTSMixerConfig`, *required*): + Configuration. + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__() + + self.dropout_layer = nn.Dropout(config.head_dropout) + self.base_pt_block = nn.Linear(config.d_model, config.patch_length) + + def forward(self, hidden_features): + """ + Args: + hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode + or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden + features. + + Returns: + `torch.Tensor` of shape `(batch_size x n_vars x num_patch x patch_length)`. + """ + + hidden_features = self.dropout_layer(hidden_features) + forecast = self.base_pt_block(hidden_features) # [batch_size x n_vars x num_patch x patch_length] + return forecast + + +# Copied from transformers.models.patchtst.modeling_patchtst.random_masking +def random_masking( + inputs: torch.Tensor, + mask_ratio: float, + unmasked_channel_indices: list = None, + channel_consistent_masking: bool = False, + mask_value: int = 0, +): + """random_masking: Mask the input considering the control variables. + + Args: + inputs (`torch.Tensor` of shape `(batch_size, num_channels, sequence_length, num_features)`): + The input tensor to mask. + mask_ratio (`float`): + Masking ratio applied to mask the input data during random pretraining. It is the number between 0 and 1. + unmasked_channel_indices (list, *optional*): + Indices of channels that will not be masked. + channel_consistent_masking (bool, *optional*, defaults to `False`): + When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary + across channels. + mask_value (int, *optional*, defaults to 0): + Define the value of masked patches for pretraining. + + Returns: + `tuple(torch.Tensor)`: inputs_mask, masked input, same shape as input Tensor and mask tensor of shape [bs x c x + n] + """ + if mask_ratio < 0 or mask_ratio >= 1: + raise ValueError(f"Mask ratio {mask_ratio} has to be between 0 and 1.") + + batch_size, num_channels, sequence_length, num_features = inputs.shape + device = inputs.device + + len_keep = int(sequence_length * (1 - mask_ratio)) + + if channel_consistent_masking: + noise = torch.rand(batch_size, 1, sequence_length, device=device) # noise in [0, 1], bs x 1 x L + noise = noise.repeat(1, num_channels, 1) # bs x num_channels x time + else: + # noise in [0, 1], bs x num_channels x L + noise = torch.rand(batch_size, num_channels, sequence_length, device=device) + + # mask: [bs x num_channels x num_patch] + mask = torch.ones(batch_size, num_channels, sequence_length, device=device) + mask[:, :, :len_keep] = 0 + + # sort noise for each sample + ids_shuffle = torch.argsort(noise, dim=-1) # ascend: small is keep, large is remove + ids_restore = torch.argsort(ids_shuffle, dim=-1) # ids_restore: [bs x num_channels x L] + + mask = torch.gather(mask, dim=-1, index=ids_restore) + mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patches x patch_length] + if unmasked_channel_indices is not None: + mask[:, unmasked_channel_indices, :, :] = 0 + + inputs_mask = inputs.masked_fill(mask.bool(), mask_value) + return inputs_mask, mask[..., 0] + + +# Copied from transformers.models.patchtst.modeling_patchtst.forecast_masking +def forecast_masking( + inputs: torch.Tensor, + num_forecast_mask_patches: Union[list, int], + unmasked_channel_indices: list = None, + mask_value: int = 0, +): + """Forecast masking that masks the last K patches where K is from the num_forecast_mask_patches. + If num_forecast_mask_patches is a list, samples in the batch will be randomly masked by numbers defined in the list. + + Parameters: + inputs (`torch.Tensor`): + Input of shape `(bs, num_channels, num_patch, patch_len)` + num_forecast_mask_patches (`list`): + Number of patches to be masked at the end of each batch sample. e.g. 4 or [3, 5]. + unmasked_channel_indices (`list`, *optional*): + Indices of channels that are not masked. + mask_value (`int`, *optional*, defaults to 0): + Values in the masked patches will be filled by `mask_value`. + + Returns: + `tuple(torch.Tensor)`: inputs_mask, masked input, same shape as inputs Tensor and Mask tensor of shape `(bs, + num_channels , num_patch)` or `(bs, tsg1, tsg2, num_channels, num_patch)` + """ + + if isinstance(num_forecast_mask_patches, int): + num_forecast_mask_patches = [num_forecast_mask_patches] + forecast_mask_ratios = [1 for _ in num_forecast_mask_patches] + + batch_size, num_channels, sequence_length, num_features = inputs.shape + mask = torch.zeros(batch_size, num_channels, sequence_length, device=inputs.device) + + t_list = [] + total_length = 0 + total_ratio = sum(forecast_mask_ratios) + + for patch_length, ratio in zip(num_forecast_mask_patches, forecast_mask_ratios): + if patch_length <= 0 or patch_length >= sequence_length: + raise ValueError( + f"num_forecast_mask_patches {patch_length} should be greater than 0 and less than total patches." + ) + temp_len = int(batch_size * ratio / total_ratio) + t_list.append([patch_length, ratio, temp_len]) + total_length += temp_len + + t_list = sorted(t_list, key=lambda x: x[2]) + + if total_length < batch_size: + t_list[0][2] = t_list[0][2] + (batch_size - total_length) + elif total_length > batch_size: + t_list[-1][2] = t_list[-1][2] + (total_length - batch_size) + + batch1 = 0 + for patch_len, _, temp_len in t_list: + batch2 = batch1 + temp_len + mask[batch1:batch2, :, -patch_len:] = 1 + batch1 = batch2 + + perm = torch.randperm(mask.shape[0]) + mask = mask[perm] + + mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patch x patch_len] + if unmasked_channel_indices is not None: + mask[:, unmasked_channel_indices, :, :] = 0 + + inputs_mask = inputs.masked_fill(mask.bool(), mask_value) + return inputs_mask, mask[..., 0] + + +# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTPatchify with PatchTST->PatchTSMixer +class PatchTSMixerPatchify(nn.Module): + """ + A class to patchify the time series sequence into different patches + + Returns: + `torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)` + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__() + + self.sequence_length = config.context_length + self.patch_length = config.patch_length + self.patch_stride = config.patch_stride + + if self.sequence_length <= self.patch_length: + raise ValueError( + f"Sequence length ({self.sequence_length}) has to be greater than the patch length ({self.patch_length})" + ) + + # get the number of patches + self.num_patches = (max(self.sequence_length, self.patch_length) - self.patch_length) // self.patch_stride + 1 + new_sequence_length = self.patch_length + self.patch_stride * (self.num_patches - 1) + self.sequence_start = self.sequence_length - new_sequence_length + + def forward(self, past_values: torch.Tensor): + """ + Parameters: + past_values (`torch.Tensor` of shape `(batch_size, sequence_length, num_channels)`, *required*): + Input for patchification + + Returns: + `torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)` + """ + sequence_length = past_values.shape[-2] + if sequence_length != self.sequence_length: + raise ValueError( + f"Input sequence length ({sequence_length}) doesn't match model configuration ({self.sequence_length})." + ) + # output: [bs x new_sequence_length x num_channels] + output = past_values[:, self.sequence_start :, :] + # output: [bs x num_patches x num_input_channels x patch_length] + output = output.unfold(dimension=-2, size=self.patch_length, step=self.patch_stride) + # output: [bs x num_input_channels x num_patches x patch_length] + output = output.transpose(-2, -3).contiguous() + return output + + +# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTMasking with PatchTST->PatchTSMixer +class PatchTSMixerMasking(nn.Module): + """ + Class to perform random or forecast masking. + + Parameters: + config (`PatchTSMixerConfig`): model config + Returns: + x_mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`) + Masked patched input + mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`) + Bool tensor indicating True on masked points + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__() + self.random_mask_ratio = config.random_mask_ratio + self.channel_consistent_masking = config.channel_consistent_masking + self.mask_type = config.mask_type + self.num_forecast_mask_patches = config.num_forecast_mask_patches + self.unmasked_channel_indices = config.unmasked_channel_indices + self.mask_value = config.mask_value + if self.unmasked_channel_indices is not None: + self.unmasked_channel_indices = sorted(self.unmasked_channel_indices) + + def forward(self, patch_input: torch.Tensor): + """ + Parameters: + patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*): + Patch input + + Return: + masked_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`) + Masked patched input + mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`) + Bool tensor indicating True on masked points + + """ + if self.mask_type == "random": + masked_input, mask = random_masking( + inputs=patch_input, + mask_ratio=self.random_mask_ratio, + unmasked_channel_indices=self.unmasked_channel_indices, + channel_consistent_masking=self.channel_consistent_masking, + mask_value=self.mask_value, + ) + elif self.mask_type == "forecast": + masked_input, mask = forecast_masking( + inputs=patch_input, + num_forecast_mask_patches=self.num_forecast_mask_patches, + unmasked_channel_indices=self.unmasked_channel_indices, + mask_value=self.mask_value, + ) + else: + raise ValueError(f"Invalid mask type {self.mask_type}.") + + # mask: [bs x num_input_channels x num_patch] + mask = mask.bool() + return masked_input, mask + + +# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTStdScaler with PatchTST->PatchTSMixer +class PatchTSMixerStdScaler(nn.Module): + """ + Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by + subtracting from the mean and dividing by the standard deviation. + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__() + self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 + self.keepdim = config.keepdim if hasattr(config, "keepdim") else True + self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5 + + def forward( + self, data: torch.Tensor, observed_indicator: torch.Tensor + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Parameters: + data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): + input for Batch norm calculation + observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): + Calculating the scale on the observed indicator. + Returns: + tuple of `torch.Tensor` of shapes + (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, + `(batch_size, 1, num_input_channels)`) + """ + denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim) + denominator = denominator.clamp_min(1.0) + loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator + + variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator + scale = torch.sqrt(variance + self.minimum_scale) + return (data - loc) / scale, loc, scale + + +# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTMeanScaler with PatchTST->PatchTSMixer +class PatchTSMixerMeanScaler(nn.Module): + """ + Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data + accordingly. + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__() + self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 + self.keepdim = config.keepdim if hasattr(config, "keepdim") else True + self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10 + self.default_scale = config.default_scale if hasattr(config, "default_scale") else None + + def forward( + self, data: torch.Tensor, observed_indicator: torch.Tensor + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Parameters: + data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): + input for Batch norm calculation + observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): + Calculating the scale on the observed indicator. + Returns: + tuple of `torch.Tensor` of shapes + (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, + `(batch_size, 1, num_input_channels)`) + """ + ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True) + num_observed = observed_indicator.sum(self.dim, keepdim=True) + + scale = ts_sum / torch.clamp(num_observed, min=1) + + # If `default_scale` is provided, we use it, otherwise we use the scale + # of the batch. + if self.default_scale is None: + batch_sum = ts_sum.sum(dim=0) + batch_observations = torch.clamp(num_observed.sum(0), min=1) + default_scale = torch.squeeze(batch_sum / batch_observations) + else: + default_scale = self.default_scale * torch.ones_like(scale) + + # apply default scale where there are no observations + scale = torch.where(num_observed > 0, scale, default_scale) + + # ensure the scale is at least `self.minimum_scale` + scale = torch.clamp(scale, min=self.minimum_scale) + scaled_data = data / scale + + if not self.keepdim: + scale = scale.squeeze(dim=self.dim) + + return scaled_data, torch.zeros_like(scale), scale + + +# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTNOPScaler with PatchTST->PatchTSMixer +class PatchTSMixerNOPScaler(nn.Module): + """ + Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data. + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__() + self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 + self.keepdim = config.keepdim if hasattr(config, "keepdim") else True + + def forward( + self, data: torch.Tensor, observed_indicator: torch.Tensor = None + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Parameters: + data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): + input for Batch norm calculation + Returns: + tuple of `torch.Tensor` of shapes + (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, + `(batch_size, 1, num_input_channels)`) + """ + scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) + loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) + return data, loc, scale + + +@dataclass +class PatchTSMixerEncoderOutput(ModelOutput): + """ + Base class for `PatchTSMixerEncoderOutput`, with potential hidden states. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, d_model)`): + Hidden-state at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*): + Hidden-states of the model at the output of each layer. + """ + + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + + +class PatchTSMixerEncoder(PatchTSMixerPreTrainedModel): + """ + Encoder for PatchTSMixer which inputs patched time-series and outputs patched embeddings. + + Args: + config (`PatchTSMixerConfig`, *required*): + Configuration. + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__(config) + + self.use_return_dict = config.use_return_dict + + self.patcher = nn.Linear(config.patch_length, config.d_model) + if config.use_positional_encoding: + self.positional_encoder = PatchTSMixerPositionalEncoding(config=config) + else: + self.positional_encoder = None + self.mlp_mixer_encoder = PatchTSMixerBlock(config=config) + + # Initialize weights and apply final processing + if config.post_init: + self.post_init() + + @replace_return_docstrings(output_type=PatchTSMixerEncoderOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + past_values: torch.Tensor, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, PatchTSMixerEncoderOutput]: + r""" + Args: + past_values (`torch.FloatTensor` of shape `(batch_size, seq_length, num_input_channels)`): + Context values of the time series. For a pretraining task, this denotes the input time series to + predict the masked portion. For a forecasting task, this denotes the history/past time series values. + Similarly, for classification or regression tasks, it denotes the appropriate context values of the + time series. + + For univariate time series, `num_input_channels` dimension should be 1. For multivariate time series, + it is greater than 1. + + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. + + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + + Returns: + `torch.FloatTensor` of shape `(batch_size, n_vars, num_patches, d_model)` + """ + + return_dict = return_dict if return_dict is not None else self.use_return_dict + + # flatten [bs x num_patch x d_model]. common_channel/mix_channel: [bs x n_vars x num_patch x d_model] + patches = self.patcher(past_values) + + # add positional encoder + if self.positional_encoder is not None: + patches = self.positional_encoder(patches) + + last_hidden_state, hidden_states = self.mlp_mixer_encoder(patches, output_hidden_states=output_hidden_states) + + if not return_dict: + return tuple( + v + for v in [ + last_hidden_state, + hidden_states, + ] + ) + + return PatchTSMixerEncoderOutput(last_hidden_state=last_hidden_state, hidden_states=hidden_states) + + +@dataclass +class PatchTSMixerModelOutput(ModelOutput): + """ + Base class for model's outputs, with potential hidden states. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, d_model)`): + Hidden-state at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*): + Hidden-states of the model at the output of each layer. + patch_input (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, patch_length)`): + Patched input data to the model. + mask: (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches)`,*optional*): + Bool Tensor indicating True in masked patches and False otherwise. + loc: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`,*optional*): + Gives the mean of the context window per channel. Used for revin denorm outside the model, if revin + enabled. + scale: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`,*optional*): + Gives the std dev of the context window per channel. Used for revin denorm outside the model, if revin + enabled. + """ + + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + patch_input: torch.FloatTensor = None + mask: Optional[torch.FloatTensor] = None + loc: Optional[torch.FloatTensor] = None + scale: Optional[torch.FloatTensor] = None + + +@add_start_docstrings( + "The PatchTSMixer Model for time-series forecasting.", + PATCHTSMIXER_START_DOCSTRING, +) +class PatchTSMixerModel(PatchTSMixerPreTrainedModel): + def __init__(self, config: PatchTSMixerConfig, mask_input: bool = False): + super().__init__(config) + + self.use_return_dict = config.use_return_dict + self.encoder = PatchTSMixerEncoder(config) + self.patching = PatchTSMixerPatchify(config) + + if mask_input is True: + self.masking = PatchTSMixerMasking(config) + else: + self.masking = None + + if config.scaling == "mean": + self.scaler = PatchTSMixerMeanScaler(config) + elif config.scaling == "std" or config.scaling is True: + self.scaler = PatchTSMixerStdScaler(config) + else: + self.scaler = PatchTSMixerNOPScaler(config) + + # Initialize weights and apply final processing + if config.post_init: + self.post_init() + + @add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=PatchTSMixerModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + past_values: torch.Tensor, + observed_mask: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = None, + ) -> PatchTSMixerModelOutput: + r""" + observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): + Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected + in `[0, 1]`: + - 1 for values that are **observed**, + - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). + + Returns: + + """ + return_dict = return_dict if return_dict is not None else self.use_return_dict + + mask = None + if observed_mask is None: + observed_mask = torch.ones_like(past_values) + scaled_past_values, loc, scale = self.scaler(past_values, observed_mask) + + patched_x = self.patching(scaled_past_values) # [batch_size x num_input_channels x num_patch x patch_length + + enc_input = patched_x + if self.masking is not None: + enc_input, mask = self.masking(patched_x) + # enc_input: [batch_size x num_input_channels x num_patch x patch_length] + # mask: [batch_size x num_input_channels x num_patch] + + encoder_output = self.encoder( + enc_input, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if isinstance(encoder_output, tuple): + encoder_output = PatchTSMixerEncoderOutput(*encoder_output) + + if not return_dict: + return tuple( + v + for v in [ + encoder_output.last_hidden_state, + encoder_output.hidden_states, + patched_x, + mask, + loc, + scale, + ] + ) + + return PatchTSMixerModelOutput( + last_hidden_state=encoder_output.last_hidden_state, + hidden_states=encoder_output.hidden_states, + patch_input=patched_x, + mask=mask, + loc=loc, + scale=scale, + ) + + +@dataclass +class PatchTSMixerForPreTrainingOutput(ModelOutput): + """ + Output type of [`PatchTSMixerForPreTrainingOutput`]. + + Args: + prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, patch_length)`): + Prediction output from the pretrain head. + hidden_states (`tuple(torch.FloatTensor)`, *optional*): + Hidden-states of the model at the output of each layer. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`): + Backbone embeddings before passing through the head. + loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`): + Total loss + """ + + loss: Optional[torch.FloatTensor] = None + prediction_outputs: torch.FloatTensor = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + + +class PatchTSMixerForPretraining(PatchTSMixerPreTrainedModel): + r""" + `PatchTSMixer` for mask pretraining. + + Args: + config (`PatchTSMixerConfig`, *required*): + Configuration. + + Returns: + `None`. + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__(config) + self.model = PatchTSMixerModel(config, mask_input=True) + self.head = PatchTSMixerPretrainHead(config=config) + self.masked_loss = config.masked_loss + self.use_return_dict = config.use_return_dict + + # Initialize weights and apply final processing + if config.post_init: + self.post_init() + + @add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=PatchTSMixerForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + past_values: torch.Tensor, + observed_mask: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = False, + return_loss: bool = True, + return_dict: Optional[bool] = None, + ) -> PatchTSMixerForPreTrainingOutput: + r""" + observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): + Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected + in `[0, 1]`: + - 1 for values that are **observed**, + - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). + return_loss (`bool`, *optional*): + Whether to return the loss in the `forward` call. + + Returns: + + """ + return_dict = return_dict if return_dict is not None else self.use_return_dict + + if self.masked_loss is True: + loss = torch.nn.MSELoss(reduction="none") + else: + loss = torch.nn.MSELoss(reduction="mean") + + # past_values: tensor [batch_size x context_length x num_input_channels] + model_output = self.model( + past_values, + observed_mask=observed_mask, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) # x.last_hidden_state: [batch_size x nvars x num_patch x d_model] + if isinstance(model_output, tuple): + model_output = PatchTSMixerModelOutput(*model_output) + + x_hat = self.head(model_output.last_hidden_state) # tensor [batch_size x nvars x num_patch x patch_length] + + if return_loss is True: + loss_val = loss(x_hat, model_output.patch_input) + else: + loss_val = None + + # calculate masked_loss + if self.masked_loss is True and loss_val is not None: + loss_val = (loss_val.mean(dim=-1) * model_output.mask).sum() / (model_output.mask.sum() + 1e-10) + + if not return_dict: + return tuple( + v + for v in [ + loss_val, + x_hat, + model_output.last_hidden_state, + model_output.hidden_states, + ] + ) + + return PatchTSMixerForPreTrainingOutput( + loss=loss_val, + prediction_outputs=x_hat, # tensor [batch_size x nvars x num_patch x patch_length] + last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model] + hidden_states=model_output.hidden_states, + ) + + +@dataclass +class PatchTSMixerForPredictionOutput(ModelOutput): + """ + Output type of [`PatchTSMixerForPredictionOutput`]. + + Args: + prediction_outputs (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_input_channels)`): + Prediction output from the forecast head. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`): + Backbone embeddings before passing through the head. + hidden_states (`tuple(torch.FloatTensor)`, *optional*): + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`): + Total loss. + loc (`torch.FloatTensor`, *optional* of shape `(batch_size, 1, num_input_channels)`): + Input mean + scale (`torch.FloatTensor`, *optional* of shape `(batch_size, 1, num_input_channels)`): + Input std dev + + """ + + loss: Optional[torch.FloatTensor] = None + prediction_outputs: torch.FloatTensor = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + loc: torch.FloatTensor = None + scale: torch.FloatTensor = None + + +@dataclass +class SamplePatchTSMixerPredictionOutput(ModelOutput): + """ + Base class for time series model's predictions outputs that contains the sampled values from the chosen + distribution. + + Args: + sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, prediction_length, number_channels)`): + Sampled values from the chosen distribution. + """ + + sequences: torch.FloatTensor = None + + +@dataclass +class SamplePatchTSMixerRegressionOutput(ModelOutput): + """ + Base class for time series model's predictions outputs that contains the sampled values from the chosen + distribution. + + Args: + sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, num_targets)` + Sampled values from the chosen distribution. + """ + + sequences: torch.FloatTensor = None + + +# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll +def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor: + """ + Computes the negative log likelihood loss from input distribution with respect to target. + """ + return -input.log_prob(target) + + +# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average +def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor: + """ + Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero, + meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`. + + Args: + input_tensor (`torch.FloatTensor`): + Input tensor, of which the average must be computed. + weights (`torch.FloatTensor`, *optional*): + Weights tensor, of the same shape as `input_tensor`. + dim (`int`, *optional*): + The dim along which to average `input_tensor`. + + Returns: + `torch.FloatTensor`: The tensor with values averaged along the specified `dim`. + """ + if weights is not None: + weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor)) + sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0) + return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights + else: + return input_tensor.mean(dim=dim) + + +class PatchTSMixerForPrediction(PatchTSMixerPreTrainedModel): + r""" + `PatchTSMixer` for forecasting application. + + Args: + config (`PatchTSMixerConfig`, *required*): + Configuration. + + Returns: + `None`. + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__(config) + self.loss = config.loss + self.use_return_dict = config.use_return_dict + self.prediction_channel_indices = config.prediction_channel_indices + self.num_parallel_samples = config.num_parallel_samples + + if config.loss == "mse": + self.distribution_output = None + else: + dim = config.prediction_length + distribution_output_map = { + "student_t": StudentTOutput, + "normal": NormalOutput, + "negative_binomial": NegativeBinomialOutput, + } + output_class = distribution_output_map.get(config.distribution_output, None) + if output_class is not None: + self.distribution_output = output_class(dim=dim) + else: + raise ValueError(f"Unknown distribution output {config.distribution_output}") + + self.model = PatchTSMixerModel(config) + self.head = PatchTSMixerForPredictionHead( + config=config, + distribution_output=self.distribution_output, + ) + + # Initialize weights and apply final processing + if config.post_init: + self.post_init() + + @add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=PatchTSMixerForPredictionOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + past_values: torch.Tensor, + observed_mask: Optional[torch.Tensor] = None, + future_values: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = False, + return_loss: bool = True, + return_dict: Optional[bool] = None, + ) -> PatchTSMixerForPredictionOutput: + r""" + observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): + Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected + in `[0, 1]`: + - 1 for values that are **observed**, + - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). + future_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,: + `(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target + values of the time series, that serve as labels for the model. The `future_values` is what the + Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT + required for a pretraining task. + + For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want + to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter, + pass the target data with all channels, as channel Filtering for both prediction and target will be + manually applied before the loss computation. + + return_loss (`bool`, *optional*): + Whether to return the loss in the `forward` call. + + Returns: + + """ + if self.loss == "mse": + loss = nn.MSELoss(reduction="mean") + elif self.loss == "nll": + loss = nll + else: + raise ValueError("Invalid loss function: Allowed values: mse and nll") + + return_dict = return_dict if return_dict is not None else self.use_return_dict + + # past_values: tensor [batch_size x context_length x num_input_channels] + model_output = self.model( + past_values, + observed_mask=observed_mask, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) # model_output: [batch_size x nvars x num_patch x d_model] + if isinstance(model_output, tuple): + model_output = PatchTSMixerModelOutput(*model_output) + + # tensor [batch_size x prediction_length x num_input_channels] + y_hat = self.head(model_output.last_hidden_state) + + loss_val = None + if self.prediction_channel_indices is not None: + if self.distribution_output: + distribution = self.distribution_output.distribution( + y_hat, + loc=model_output.loc[..., self.prediction_channel_indices], + scale=model_output.scale[..., self.prediction_channel_indices], + ) + if future_values is not None and return_loss is True: + loss_val = loss( + distribution, + future_values[..., self.prediction_channel_indices], + ) + # take average of the loss + loss_val = weighted_average(loss_val) + else: + y_hat = ( + y_hat * model_output.scale[..., self.prediction_channel_indices] + + model_output.loc[..., self.prediction_channel_indices] + ) + if future_values is not None and return_loss is True: + loss_val = loss(y_hat, future_values[..., self.prediction_channel_indices]) + else: + if self.distribution_output: + distribution = self.distribution_output.distribution( + y_hat, loc=model_output.loc, scale=model_output.scale + ) + if future_values is not None and return_loss is True: + loss_val = loss(distribution, future_values) + loss_val = weighted_average(loss_val) + else: + y_hat = y_hat * model_output.scale + model_output.loc + if future_values is not None and return_loss is True: + loss_val = loss(y_hat, future_values) + + if self.prediction_channel_indices is not None: + loc = model_output.loc[..., self.prediction_channel_indices] + scale = model_output.scale[..., self.prediction_channel_indices] + else: + loc = model_output.loc + scale = model_output.scale + + if not return_dict: + return tuple( + v + for v in [ + loss_val, + y_hat, + model_output.last_hidden_state, + model_output.hidden_states, + loc, + scale, + ] + ) + + return PatchTSMixerForPredictionOutput( + loss=loss_val, + prediction_outputs=y_hat, # tensor [batch_size x prediction_length x num_input_channels] + last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model] + hidden_states=model_output.hidden_states, + loc=loc, + scale=scale, + ) + + def generate( + self, + past_values: torch.Tensor, + observed_mask: Optional[torch.Tensor] = None, + ) -> SamplePatchTSMixerPredictionOutput: + """ + Generate sequences of sample predictions from a model with a probability distribution head. + + Args: + past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`): + Past values of the time series that serves as context in order to predict the future. + + observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): + Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected + in `[0, 1]`: + + - 1 for values that are **observed**, + - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). + + Return: + [`SamplePatchTSMixerPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, + number of samples, prediction_length, num_input_channels)`. + """ + # get number of samples + num_parallel_samples = self.num_parallel_samples + + # get model output + outputs = self( + past_values=past_values, + future_values=None, + observed_mask=observed_mask, + output_hidden_states=False, + ) + + # get distribution + + distribution = self.distribution_output.distribution( + outputs.prediction_outputs, loc=outputs.loc, scale=outputs.scale + ) + + # get samples: list of [batch_size x prediction_length x num_channels] + samples = [distribution.sample() for _ in range(num_parallel_samples)] + + # stack tensors + samples = torch.stack(samples, dim=1) # [batch_size x num_samples x prediction_length x num_channels] + return SamplePatchTSMixerPredictionOutput(sequences=samples) + + +@dataclass +class PatchTSMixerForTimeSeriesClassificationOutput(ModelOutput): + """ + Output type of [`PatchTSMixerForTimeSeriesClassificationOutput`]. + + Args: + prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_labels)`): + Prediction output from the classfication head. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`): + Backbone embeddings before passing through the head. + hidden_states (`tuple(torch.FloatTensor)`, *optional*): + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`): + Total loss. + """ + + loss: Optional[torch.FloatTensor] = None + prediction_outputs: torch.FloatTensor = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + + +class PatchTSMixerForTimeSeriesClassification(PatchTSMixerPreTrainedModel): + r""" + `PatchTSMixer` for classification application. + + Args: + config (`PatchTSMixerConfig`, *required*): + Configuration. + + Returns: + `None`. + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__(config) + + self.model = PatchTSMixerModel(config) + self.head = PatchTSMixerLinearHead( + config=config, + ) + self.use_return_dict = config.use_return_dict + if config.scaling in ["std", "mean", True]: + self.inject_scale = InjectScalerStatistics4D(d_model=config.d_model, num_patches=config.num_patches) + else: + self.inject_scale = None + + # Initialize weights and apply final processing + if config.post_init: + self.post_init() + + @add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING) + @replace_return_docstrings( + output_type=PatchTSMixerForTimeSeriesClassificationOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + past_values: torch.Tensor, + future_values: torch.Tensor = None, + output_hidden_states: Optional[bool] = False, + return_loss: bool = True, + return_dict: Optional[bool] = None, + ) -> PatchTSMixerForTimeSeriesClassificationOutput: + r""" + future_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting, + `(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target + values of the time series, that serve as labels for the model. The `future_values` is what the + Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT + required for a pretraining task. + + For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want + to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter, + pass the target data with all channels, as channel Filtering for both prediction and target will be + manually applied before the loss computation. + + For a classification task, it has a shape of `(batch_size,)`. + + For a regression task, it has a shape of `(batch_size, num_targets)`. + return_loss (`bool`, *optional*): + Whether to return the loss in the `forward` call. + + Returns: + + """ + + loss = torch.nn.CrossEntropyLoss() + + return_dict = return_dict if return_dict is not None else self.use_return_dict + + model_output = self.model( + past_values, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) # x: [batch_size x nvars x num_patch x d_model] + if isinstance(model_output, tuple): + model_output = PatchTSMixerModelOutput(*model_output) + + if self.inject_scale is not None: + model_output.last_hidden_state = self.inject_scale( + model_output.last_hidden_state, + loc=model_output.loc, + scale=model_output.scale, + ) # x: [batch_size x nvars x num_patch x d_model] + + y_hat = self.head(model_output.last_hidden_state) # tensor [batch_size x n_labels] + + if future_values is not None and return_loss is True: + loss_val = loss(y_hat, future_values) + else: + loss_val = None + + if not return_dict: + return tuple( + v + for v in [ + loss_val, + y_hat, + model_output.last_hidden_state, + model_output.hidden_states, + ] + ) + + return PatchTSMixerForTimeSeriesClassificationOutput( + loss=loss_val, + prediction_outputs=y_hat, # tensor [batch_size x n_labels] + last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model] + hidden_states=model_output.hidden_states, + ) + + +@dataclass +class PatchTSMixerForRegressionOutput(ModelOutput): + """ + Output type of [`PatchTSMixerForRegressionOutput`]. + + Args: + prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_targets)`): + Prediction output from the regression head. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`): + Backbone embeddings before passing through the head. + hidden_states (`tuple(torch.FloatTensor)`, *optional*): + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`): + Total loss. + """ + + loss: Optional[torch.FloatTensor] = None + prediction_outputs: torch.FloatTensor = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + + +class InjectScalerStatistics4D(nn.Module): + def __init__(self, d_model: int, num_patches: int, expansion: int = 2): + super().__init__() + + self.inverse_trans_expansion = nn.Linear(d_model + 2, expansion * d_model) + self.inverse_trans_compression = nn.Linear(expansion * d_model, d_model) + self.map_scale_expansion = nn.Linear(2, 2 * expansion) + self.map_scale_compression = nn.Linear(2 * expansion, 2) + self.num_patches = num_patches + + def forward(self, inputs: torch.Tensor, loc: torch.Tensor, scale: torch.Tensor): + """ + Args: + inputs (`torch.Tensor` of shape `(batch_size, num_input_channels, num_patch, d_model)`) + loc (`torch.Tensor` of shape `(batch_size, 1, num_input_channels)`) + scale (`torch.Tensor` of shape `(batch_size, 1, num_input_channels)`) + Returns: + `torch.Tensor` of shape `(batch_size, num_input_channels, num_patch, d_model)` + """ + + mean = loc.transpose(-1, -2) # [batch_size x n_channels x 1 ] + mean = mean.unsqueeze(-2) # [batch_size x n_channels x 1 x 1] + mean = mean.repeat(1, 1, self.num_patches, 1) # [batch_size x n_channels x num_patch x 1] + + stdev = scale.transpose(-1, -2) # [batch_size x n_channels x 1 ] + stdev = stdev.unsqueeze(-2) # [batch_size x n_channels x 1 x 1] + stdev = stdev.repeat(1, 1, self.num_patches, 1) # [batch_size x n_channels x num_patch x 1] + + concat_stats = torch.cat([mean, stdev], dim=-1) # [batch_size x n_channels x num_patch x 2] + + concat_stats = self.map_scale_expansion(concat_stats) # [batch_size x n_channels x num_patch x (2*expansion)] + concat_stats = self.map_scale_compression(concat_stats) # [batch_size x n_channels x num_patch x 2] + + inputs = torch.cat([inputs, concat_stats], dim=-1) # [batch_size x channels x num_patch x d_model+2] + inputs = self.inverse_trans_expansion(inputs) # [batch_size x channels x num_patch x (expansion*d_model)] + inputs = self.inverse_trans_compression(inputs) # [batch_size x channels x num_patch x d_model] + + return inputs + + +class PatchTSMixerForRegression(PatchTSMixerPreTrainedModel): + r""" + `PatchTSMixer` for regression application. + + Args: + config (`PatchTSMixerConfig`, *required*): + Configuration. + + Returns: + `None`. + """ + + def __init__(self, config: PatchTSMixerConfig): + super().__init__(config) + + self.model = PatchTSMixerModel(config) + + self.loss = config.loss + self.distribution_output = config.distribution_output + + self.use_return_dict = config.use_return_dict + self.num_parallel_samples = config.num_parallel_samples + + if config.loss == "mse": + self.distribution_output = None + else: + distribution_output_map = { + "student_t": StudentTOutput, + "normal": NormalOutput, + "negative_binomial": NegativeBinomialOutput, + } + output_class = distribution_output_map.get(config.distribution_output) + if output_class is not None: + self.distribution_output = output_class(dim=config.num_targets) + else: + raise ValueError(f"Unknown distribution output {config.distribution_output}") + + if config.scaling in ["std", "mean", True]: + self.inject_scale = InjectScalerStatistics4D(d_model=config.d_model, num_patches=config.num_patches) + else: + self.inject_scale = None + + self.head = PatchTSMixerLinearHead( + config=config, + distribution_output=self.distribution_output, + ) + + # Initialize weights and apply final processing + if config.post_init: + self.post_init() + + @add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=PatchTSMixerForRegressionOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + past_values: torch.Tensor, + future_values: torch.Tensor = None, + output_hidden_states: Optional[bool] = False, + return_loss: bool = True, + return_dict: Optional[bool] = None, + ) -> PatchTSMixerForRegressionOutput: + r""" + future_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting, + `(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target + values of the time series, that serve as labels for the model. The `future_values` is what the + Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT + required for a pretraining task. + + For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want + to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter, + pass the target data with all channels, as channel Filtering for both prediction and target will be + manually applied before the loss computation. + + For a classification task, it has a shape of `(batch_size,)`. + + For a regression task, it has a shape of `(batch_size, num_targets)`. + return_loss (`bool`, *optional*): + Whether to return the loss in the `forward` call. + + Returns: + + """ + + if self.loss == "mse": + loss = nn.MSELoss(reduction="mean") + elif self.loss == "nll": + loss = nll + else: + raise ValueError("Invalid loss function: Allowed values: mse and nll") + + return_dict = return_dict if return_dict is not None else self.use_return_dict + model_output = self.model( + past_values, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) # model_output: [batch_size x nvars x num_patch x d_model] + if isinstance(model_output, tuple): + model_output = PatchTSMixerModelOutput(*model_output) + + if self.inject_scale is not None: + model_output.last_hidden_state = self.inject_scale( + model_output.last_hidden_state, + loc=model_output.loc, + scale=model_output.scale, + ) # x: [batch_size x nvars x num_patch x d_model] + + y_hat = self.head(model_output.last_hidden_state) # [batch_size x num_targets] + + if future_values is not None and return_loss is True: + if self.distribution_output: + if self.distribution_output == "negative_binomial" and torch.any(future_values < 0): + raise Exception("future_values cannot be negative for negative_binomial distribution.") + distribution = self.distribution_output.distribution(y_hat) + loss_val = loss(distribution, future_values) + # take average of the loss + loss_val = weighted_average(loss_val) + else: + loss_val = loss(y_hat, future_values) + else: + loss_val = None + + if not return_dict: + return tuple( + v + for v in [ + loss_val, + y_hat, + model_output.last_hidden_state, + model_output.hidden_states, + ] + ) + + return PatchTSMixerForRegressionOutput( + loss=loss_val, + prediction_outputs=y_hat, # tensor [batch_size x num_targets] + last_hidden_state=model_output.last_hidden_state, # [batch_size x nvars x num_patch x d_model] + hidden_states=model_output.hidden_states, + ) + + def generate( + self, + past_values: torch.Tensor, + ) -> SamplePatchTSMixerRegressionOutput: + """ + Generate sequences of sample predictions from a model with a probability distribution head. + + Args: + past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`): + Past values of the time series that serves as context in order to predict the future. + + Return: + [`SamplePatchTSMixerRegressionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, + number of samples, num_targets)`. + """ + # get number of samples + num_parallel_samples = self.num_parallel_samples + + # get model output + outputs = self( + past_values=past_values, + future_values=None, + output_hidden_states=False, + ) + + # get distribution + distribution = self.distribution_output.distribution(outputs.prediction_outputs) + + # get samples + samples = [ + distribution.sample() for _ in range(num_parallel_samples) + ] # samples: list of [batch_size x num_targets] + # stack tensors + samples = torch.stack(samples, dim=1) # [batch_size x num_samples x num_targets] + return SamplePatchTSMixerRegressionOutput(sequences=samples) diff --git a/src/transformers/utils/dummy_pt_objects.py b/src/transformers/utils/dummy_pt_objects.py index b054266f9b2492..7fc4ccea5e48d4 100644 --- a/src/transformers/utils/dummy_pt_objects.py +++ b/src/transformers/utils/dummy_pt_objects.py @@ -6074,6 +6074,51 @@ def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) +PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST = None + + +class PatchTSMixerForPrediction(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + +class PatchTSMixerForPretraining(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + +class PatchTSMixerForRegression(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + +class PatchTSMixerForTimeSeriesClassification(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + +class PatchTSMixerModel(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + +class PatchTSMixerPreTrainedModel(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST = None diff --git a/tests/models/patchtsmixer/__init__.py b/tests/models/patchtsmixer/__init__.py new file mode 100644 index 00000000000000..e69de29bb2d1d6 diff --git a/tests/models/patchtsmixer/test_modeling_patchtsmixer.py b/tests/models/patchtsmixer/test_modeling_patchtsmixer.py new file mode 100644 index 00000000000000..4f91dc0301c2af --- /dev/null +++ b/tests/models/patchtsmixer/test_modeling_patchtsmixer.py @@ -0,0 +1,1094 @@ +# coding=utf-8 +# Copyright 2023 IBM and HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Testing suite for the PyTorch PatchTSMixer model. """ + +import inspect +import itertools +import random +import tempfile +import unittest +from typing import Dict, List, Optional, Tuple, Union + +from huggingface_hub import hf_hub_download +from parameterized import parameterized + +from transformers import is_torch_available +from transformers.models.auto import get_values +from transformers.testing_utils import is_flaky, require_torch, slow, torch_device + +from ...test_configuration_common import ConfigTester +from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor +from ...test_pipeline_mixin import PipelineTesterMixin + + +TOLERANCE = 1e-4 + +if is_torch_available(): + import torch + + from transformers import ( + MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING, + MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING, + PatchTSMixerConfig, + PatchTSMixerForPrediction, + PatchTSMixerForPretraining, + PatchTSMixerForRegression, + PatchTSMixerForTimeSeriesClassification, + PatchTSMixerModel, + ) + from transformers.models.patchtsmixer.modeling_patchtsmixer import ( + PatchTSMixerEncoder, + PatchTSMixerForPredictionHead, + PatchTSMixerForPredictionOutput, + PatchTSMixerForRegressionOutput, + PatchTSMixerForTimeSeriesClassificationOutput, + PatchTSMixerLinearHead, + PatchTSMixerPretrainHead, + ) + + +@require_torch +class PatchTSMixerModelTester: + def __init__( + self, + context_length: int = 32, + patch_length: int = 8, + num_input_channels: int = 3, + patch_stride: int = 8, + # d_model: int = 128, + hidden_size: int = 8, + # num_layers: int = 8, + num_hidden_layers: int = 2, + expansion_factor: int = 2, + dropout: float = 0.5, + mode: str = "common_channel", + gated_attn: bool = True, + norm_mlp="LayerNorm", + swin_hier: int = 0, + # masking related + mask_type: str = "forecast", + random_mask_ratio=0.5, + mask_patches: list = [2, 3], + forecast_mask_ratios: list = [1, 1], + mask_value=0, + masked_loss: bool = False, + mask_mode: str = "mask_before_encoder", + channel_consistent_masking: bool = True, + scaling: Optional[Union[str, bool]] = "std", + # Head related + head_dropout: float = 0.2, + # forecast related + prediction_length: int = 16, + out_channels: int = None, + # Classification/regression related + # num_labels: int = 3, + num_targets: int = 3, + output_range: list = None, + head_aggregation: str = None, + # Trainer related + batch_size=13, + is_training=True, + seed_number=42, + post_init=True, + num_parallel_samples=4, + ): + self.num_input_channels = num_input_channels + self.context_length = context_length + self.patch_length = patch_length + self.patch_stride = patch_stride + # self.d_model = d_model + self.hidden_size = hidden_size + self.expansion_factor = expansion_factor + # self.num_layers = num_layers + self.num_hidden_layers = num_hidden_layers + self.dropout = dropout + self.mode = mode + self.gated_attn = gated_attn + self.norm_mlp = norm_mlp + self.swin_hier = swin_hier + self.scaling = scaling + self.head_dropout = head_dropout + # masking related + self.mask_type = mask_type + self.random_mask_ratio = random_mask_ratio + self.mask_patches = mask_patches + self.forecast_mask_ratios = forecast_mask_ratios + self.mask_value = mask_value + self.channel_consistent_masking = channel_consistent_masking + self.mask_mode = mask_mode + self.masked_loss = masked_loss + # patching related + self.patch_last = True + # forecast related + self.prediction_length = prediction_length + self.out_channels = out_channels + # classification/regression related + # self.num_labels = num_labels + self.num_targets = num_targets + self.output_range = output_range + self.head_aggregation = head_aggregation + # Trainer related + self.batch_size = batch_size + self.is_training = is_training + self.seed_number = seed_number + self.post_init = post_init + self.num_parallel_samples = num_parallel_samples + + def get_config(self): + config_ = PatchTSMixerConfig( + num_input_channels=self.num_input_channels, + context_length=self.context_length, + patch_length=self.patch_length, + patch_stride=self.patch_stride, + # d_model = self.d_model, + d_model=self.hidden_size, + expansion_factor=self.expansion_factor, + # num_layers = self.num_layers, + num_layers=self.num_hidden_layers, + dropout=self.dropout, + mode=self.mode, + gated_attn=self.gated_attn, + norm_mlp=self.norm_mlp, + swin_hier=self.swin_hier, + scaling=self.scaling, + head_dropout=self.head_dropout, + mask_type=self.mask_type, + random_mask_ratio=self.random_mask_ratio, + mask_patches=self.mask_patches, + forecast_mask_ratios=self.forecast_mask_ratios, + mask_value=self.mask_value, + channel_consistent_masking=self.channel_consistent_masking, + mask_mode=self.mask_mode, + masked_loss=self.masked_loss, + prediction_length=self.prediction_length, + out_channels=self.out_channels, + # num_labels=self.num_labels, + num_targets=self.num_targets, + output_range=self.output_range, + head_aggregation=self.head_aggregation, + post_init=self.post_init, + ) + self.num_patches = config_.num_patches + return config_ + + def prepare_patchtsmixer_inputs_dict(self, config): + _past_length = config.context_length + # bs, n_vars, num_patch, patch_length + + # [bs x context_length x n_vars] + past_values = floats_tensor([self.batch_size, _past_length, self.num_input_channels]) + + future_values = floats_tensor([self.batch_size, config.prediction_length, self.num_input_channels]) + + inputs_dict = { + "past_values": past_values, + "future_values": future_values, + } + return inputs_dict + + def prepare_config_and_inputs(self): + config = self.get_config() + inputs_dict = self.prepare_patchtsmixer_inputs_dict(config) + return config, inputs_dict + + def prepare_config_and_inputs_for_common(self): + config, inputs_dict = self.prepare_config_and_inputs() + return config, inputs_dict + + +@require_torch +class PatchTSMixerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): + all_model_classes = ( + ( + PatchTSMixerModel, + PatchTSMixerForPrediction, + PatchTSMixerForPretraining, + PatchTSMixerForTimeSeriesClassification, + PatchTSMixerForRegression, + ) + if is_torch_available() + else () + ) + all_generative_model_classes = ( + (PatchTSMixerForPrediction, PatchTSMixerForPretraining) if is_torch_available() else () + ) + pipeline_model_mapping = {"feature-extraction": PatchTSMixerModel} if is_torch_available() else {} + is_encoder_decoder = False + test_pruning = False + test_head_masking = False + test_missing_keys = False + test_torchscript = False + test_inputs_embeds = False + test_model_common_attributes = False + + test_resize_embeddings = True + test_resize_position_embeddings = False + test_mismatched_shapes = True + test_model_parallel = False + has_attentions = False + + def setUp(self): + self.model_tester = PatchTSMixerModelTester() + self.config_tester = ConfigTester( + self, + config_class=PatchTSMixerConfig, + has_text_modality=False, + prediction_length=self.model_tester.prediction_length, + common_properties=["hidden_size", "expansion_factor", "num_hidden_layers"], + ) + + def test_config(self): + self.config_tester.run_common_tests() + + def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): + inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) + + # if classification model: + if model_class in get_values(MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING): + rng = random.Random(self.model_tester.seed_number) + labels = ids_tensor([self.model_tester.batch_size], self.model_tester.num_targets, rng=rng) + # inputs_dict["labels"] = labels + inputs_dict["future_values"] = labels + # inputs_dict.pop("future_values") + elif model_class in get_values(MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING): + rng = random.Random(self.model_tester.seed_number) + labels = floats_tensor([self.model_tester.batch_size, self.model_tester.num_targets], rng=rng) + # inputs_dict["labels"] = labels + inputs_dict["future_values"] = labels + # inputs_dict.pop("future_values") + elif model_class in [PatchTSMixerModel, PatchTSMixerForPretraining]: + inputs_dict.pop("future_values") + + inputs_dict["output_hidden_states"] = True + return inputs_dict + + def test_save_load_strict(self): + config, _ = self.model_tester.prepare_config_and_inputs() + for model_class in self.all_model_classes: + model = model_class(config) + + with tempfile.TemporaryDirectory() as tmpdirname: + model.save_pretrained(tmpdirname) + model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) + self.assertEqual(info["missing_keys"], []) + + def test_hidden_states_output(self): + def check_hidden_states_output(inputs_dict, config, model_class): + model = model_class(config) + model.to(torch_device) + model.eval() + + with torch.no_grad(): + outputs = model(**self._prepare_for_class(inputs_dict, model_class)) + + hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states + + expected_num_layers = getattr( + self.model_tester, + "expected_num_hidden_layers", + self.model_tester.num_hidden_layers, + ) + self.assertEqual(len(hidden_states), expected_num_layers) + + expected_hidden_size = self.model_tester.hidden_size + self.assertEqual(hidden_states[0].shape[-1], expected_hidden_size) + + num_patch = self.model_tester.num_patches + self.assertListEqual( + list(hidden_states[0].shape[-2:]), + [num_patch, self.model_tester.hidden_size], + ) + + config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() + + for model_class in self.all_model_classes: + check_hidden_states_output(inputs_dict, config, model_class) + + @unittest.skip("No tokens embeddings") + def test_resize_tokens_embeddings(self): + pass + + def test_model_outputs_equivalence(self): + config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() + + def set_nan_tensor_to_zero(t): + t[t != t] = 0 + return t + + def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): + with torch.no_grad(): + tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) + output_ = model(**dict_inputs, return_dict=True, **additional_kwargs) + attributes_ = vars(output_) + dict_output = tuple(attributes_.values()) + + def recursive_check(tuple_object, dict_object): + if isinstance(tuple_object, (List, Tuple)): + for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): + recursive_check(tuple_iterable_value, dict_iterable_value) + elif isinstance(tuple_object, Dict): + for tuple_iterable_value, dict_iterable_value in zip( + tuple_object.values(), dict_object.values() + ): + recursive_check(tuple_iterable_value, dict_iterable_value) + elif tuple_object is None: + return + else: + self.assertTrue( + torch.allclose( + set_nan_tensor_to_zero(tuple_object), + set_nan_tensor_to_zero(dict_object), + atol=1e-5, + ), + msg=( + "Tuple and dict output are not equal. Difference:" + f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" + f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" + f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." + ), + ) + + recursive_check(tuple_output, dict_output) + + for model_class in self.all_model_classes: + print(model_class) + model = model_class(config) + model.to(torch_device) + model.eval() + + tuple_inputs = self._prepare_for_class(inputs_dict, model_class) + dict_inputs = self._prepare_for_class(inputs_dict, model_class) + + check_equivalence(model, tuple_inputs, dict_inputs) + + tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) + dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) + check_equivalence(model, tuple_inputs, dict_inputs) + + tuple_inputs = self._prepare_for_class(inputs_dict, model_class) + dict_inputs = self._prepare_for_class(inputs_dict, model_class) + tuple_inputs.update({"output_hidden_states": False}) + dict_inputs.update({"output_hidden_states": False}) + check_equivalence(model, tuple_inputs, dict_inputs) + + tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) + dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) + tuple_inputs.update({"output_hidden_states": False}) + dict_inputs.update({"output_hidden_states": False}) + check_equivalence( + model, + tuple_inputs, + dict_inputs, + ) + + def test_model_main_input_name(self): + model_signature = inspect.signature(getattr(PatchTSMixerModel, "forward")) + # The main input is the name of the argument after `self` + observed_main_input_name = list(model_signature.parameters.keys())[1] + self.assertEqual(PatchTSMixerModel.main_input_name, observed_main_input_name) + + def test_forward_signature(self): + config, _ = self.model_tester.prepare_config_and_inputs_for_common() + + for model_class in self.all_model_classes: + model = model_class(config) + signature = inspect.signature(model.forward) + # signature.parameters is an OrderedDict => so arg_names order is deterministic + arg_names = [*signature.parameters.keys()] + + expected_arg_names_with_target = [ + "past_values", + "observed_mask", + "future_values", + "output_hidden_states", + "return_loss", + ] + expected_arg_names_without_target = [ + "past_values", + "observed_mask", + "output_hidden_states", + ] + + expected_arg_names = expected_arg_names_with_target + if model_class == PatchTSMixerForPretraining: + expected_arg_names = expected_arg_names_without_target + ["return_loss"] + if model_class == PatchTSMixerModel: + expected_arg_names = expected_arg_names_without_target + if model_class in get_values(MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING) or model_class in get_values( + MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING + ): + expected_arg_names.remove("observed_mask") + + self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) + + @is_flaky() + def test_retain_grad_hidden_states_attentions(self): + super().test_retain_grad_hidden_states_attentions() + + +def prepare_batch(repo_id="ibm/patchtsmixer-etth1-test-data", file="pretrain_batch.pt"): + # TODO: Make repo public + file = hf_hub_download(repo_id=repo_id, filename=file, repo_type="dataset") + batch = torch.load(file, map_location=torch_device) + return batch + + +@require_torch +@slow +class PatchTSMixerModelIntegrationTests(unittest.TestCase): + def test_pretrain_head(self): + model = PatchTSMixerForPretraining.from_pretrained("ibm/patchtsmixer-etth1-pretrain").to(torch_device) + batch = prepare_batch() + + torch.manual_seed(0) + with torch.no_grad(): + output = model(past_values=batch["past_values"].to(torch_device)).prediction_outputs + num_patch = ( + max(model.config.context_length, model.config.patch_length) - model.config.patch_length + ) // model.config.patch_stride + 1 + expected_shape = torch.Size( + [ + 32, + model.config.num_input_channels, + num_patch, + model.config.patch_length, + ] + ) + self.assertEqual(output.shape, expected_shape) + + expected_slice = torch.tensor([[[[0.1870]],[[-1.5819]],[[-0.0991]],[[-1.2609]],[[0.5633]],[[-0.5723]],[[0.3387]],]],device=torch_device) # fmt: skip + self.assertTrue(torch.allclose(output[0, :7, :1, :1], expected_slice, atol=TOLERANCE)) + + def test_forecasting_head(self): + model = PatchTSMixerForPrediction.from_pretrained("ibm/patchtsmixer-etth1-forecasting").to(torch_device) + batch = prepare_batch(file="forecast_batch.pt") + + model.eval() + torch.manual_seed(0) + with torch.no_grad(): + output = model( + past_values=batch["past_values"].to(torch_device), + future_values=batch["future_values"].to(torch_device), + ).prediction_outputs + + expected_shape = torch.Size([32, model.config.prediction_length, model.config.num_input_channels]) + self.assertEqual(output.shape, expected_shape) + + expected_slice = torch.tensor( + [[0.4271, -0.0651, 0.4656, 0.7104, -0.3085, -1.9658, 0.4560]], + device=torch_device, + ) + self.assertTrue(torch.allclose(output[0, :1, :7], expected_slice, atol=TOLERANCE)) + + def test_prediction_generation(self): + torch_device = "cpu" + model = PatchTSMixerForPrediction.from_pretrained("ibm/patchtsmixer-etth1-generate").to(torch_device) + batch = prepare_batch(file="forecast_batch.pt") + print(batch["past_values"]) + + model.eval() + torch.manual_seed(0) + with torch.no_grad(): + outputs = model.generate(past_values=batch["past_values"].to(torch_device)) + expected_shape = torch.Size((32, 1, model.config.prediction_length, model.config.num_input_channels)) + + self.assertEqual(outputs.sequences.shape, expected_shape) + + expected_slice = torch.tensor( + [[0.0091, -0.3625, -0.0887, 0.6544, -0.4100, -2.3124, 0.3376]], + device=torch_device, + ) + mean_prediction = outputs.sequences.mean(dim=1) + + self.assertTrue(torch.allclose(mean_prediction[0, -1:], expected_slice, atol=TOLERANCE)) + + +@require_torch +class PatchTSMixerFunctionalTests(unittest.TestCase): + @classmethod + def setUpClass(cls): + """Setup method: Called once before test-cases execution""" + cls.params = {} + cls.params.update( + context_length=32, + patch_length=8, + num_input_channels=3, + patch_stride=8, + d_model=4, + expansion_factor=2, + num_layers=3, + dropout=0.2, + mode="common_channel", # common_channel, mix_channel + gated_attn=True, + norm_mlp="LayerNorm", + mask_type="random", + random_mask_ratio=0.5, + mask_patches=[2, 3], + forecast_mask_ratios=[1, 1], + mask_value=0, + masked_loss=True, + channel_consistent_masking=True, + head_dropout=0.2, + prediction_length=64, + out_channels=None, + # num_labels=3, + num_targets=3, + output_range=None, + head_aggregation=None, + scaling="std", + use_positional_encoding=False, + positional_encoding="sincos", + self_attn=False, + self_attn_heads=1, + num_parallel_samples=4, + ) + + cls.num_patches = ( + max(cls.params["context_length"], cls.params["patch_length"]) - cls.params["patch_length"] + ) // cls.params["patch_stride"] + 1 + + # batch_size = 32 + batch_size = 2 + + int(cls.params["prediction_length"] / cls.params["patch_length"]) + + cls.data = torch.rand( + batch_size, + cls.params["context_length"], + cls.params["num_input_channels"], + ) + + cls.enc_data = torch.rand( + batch_size, + cls.params["num_input_channels"], + cls.num_patches, + cls.params["patch_length"], + ) + + cls.enc_output = torch.rand( + batch_size, + cls.params["num_input_channels"], + cls.num_patches, + cls.params["d_model"], + ) + + cls.flat_enc_output = torch.rand( + batch_size, + cls.num_patches, + cls.params["d_model"], + ) + + cls.correct_pred_output = torch.rand( + batch_size, + cls.params["prediction_length"], + cls.params["num_input_channels"], + ) + cls.correct_regression_output = torch.rand(batch_size, cls.params["num_targets"]) + + cls.correct_pretrain_output = torch.rand( + batch_size, + cls.params["num_input_channels"], + cls.num_patches, + cls.params["patch_length"], + ) + + cls.correct_forecast_output = torch.rand( + batch_size, + cls.params["prediction_length"], + cls.params["num_input_channels"], + ) + + cls.correct_sel_forecast_output = torch.rand(batch_size, cls.params["prediction_length"], 2) + + cls.correct_classification_output = torch.rand( + batch_size, + cls.params["num_targets"], + ) + + cls.correct_classification_classes = torch.randint(0, cls.params["num_targets"], (batch_size,)) + + def test_patchtsmixer_encoder(self): + config = PatchTSMixerConfig(**self.__class__.params) + enc = PatchTSMixerEncoder(config) + output = enc(self.__class__.enc_data) + self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) + + def test_patchmodel(self): + config = PatchTSMixerConfig(**self.__class__.params) + mdl = PatchTSMixerModel(config) + output = mdl(self.__class__.data) + self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) + self.assertEqual(output.patch_input.shape, self.__class__.enc_data.shape) + + def test_pretrainhead(self): + config = PatchTSMixerConfig(**self.__class__.params) + head = PatchTSMixerPretrainHead( + config=config, + ) + output = head(self.__class__.enc_output) + + self.assertEqual(output.shape, self.__class__.correct_pretrain_output.shape) + + def test_pretrain_full(self): + config = PatchTSMixerConfig(**self.__class__.params) + mdl = PatchTSMixerForPretraining(config) + output = mdl(self.__class__.data) + self.assertEqual( + output.prediction_outputs.shape, + self.__class__.correct_pretrain_output.shape, + ) + self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) + self.assertEqual(output.loss.item() < 100, True) + + def test_pretrain_full_with_return_dict(self): + config = PatchTSMixerConfig(**self.__class__.params) + mdl = PatchTSMixerForPretraining(config) + output = mdl(self.__class__.data, return_dict=False) + self.assertEqual(output[1].shape, self.__class__.correct_pretrain_output.shape) + self.assertEqual(output[2].shape, self.__class__.enc_output.shape) + self.assertEqual(output[0].item() < 100, True) + + def test_forecast_head(self): + config = PatchTSMixerConfig(**self.__class__.params) + head = PatchTSMixerForPredictionHead( + config=config, + ) + # output = head(self.__class__.enc_output, raw_data = self.__class__.correct_pretrain_output) + output = head(self.__class__.enc_output) + + self.assertEqual(output.shape, self.__class__.correct_forecast_output.shape) + + def check_module( + self, + task, + params=None, + output_hidden_states=True, + ): + config = PatchTSMixerConfig(**params) + if task == "forecast": + mdl = PatchTSMixerForPrediction(config) + target_input = self.__class__.correct_forecast_output + if config.prediction_channel_indices is not None: + target_output = self.__class__.correct_sel_forecast_output + else: + target_output = target_input + ref_samples = target_output.unsqueeze(1).expand(-1, config.num_parallel_samples, -1, -1) + + elif task == "classification": + mdl = PatchTSMixerForTimeSeriesClassification(config) + target_input = self.__class__.correct_classification_classes + target_output = self.__class__.correct_classification_output + elif task == "regression": + mdl = PatchTSMixerForRegression(config) + target_input = self.__class__.correct_regression_output + target_output = self.__class__.correct_regression_output + ref_samples = target_output.unsqueeze(1).expand(-1, config.num_parallel_samples, -1) + elif task == "pretrain": + mdl = PatchTSMixerForPretraining(config) + target_input = None + target_output = self.__class__.correct_pretrain_output + else: + print("invalid task") + + enc_output = self.__class__.enc_output + + if target_input is None: + output = mdl(self.__class__.data, output_hidden_states=output_hidden_states) + else: + output = mdl( + self.__class__.data, + future_values=target_input, + output_hidden_states=output_hidden_states, + ) + + if isinstance(output.prediction_outputs, tuple): + for t in output.prediction_outputs: + self.assertEqual(t.shape, target_output.shape) + else: + self.assertEqual(output.prediction_outputs.shape, target_output.shape) + + self.assertEqual(output.last_hidden_state.shape, enc_output.shape) + + if output_hidden_states is True: + self.assertEqual(len(output.hidden_states), params["num_layers"]) + + else: + self.assertEqual(output.hidden_states, None) + + self.assertEqual(output.loss.item() < 100, True) + + if config.loss == "nll" and task in ["forecast", "regression"]: + samples = mdl.generate(self.__class__.data) + self.assertEqual(samples.sequences.shape, ref_samples.shape) + + @parameterized.expand( + list( + itertools.product( + ["common_channel", "mix_channel"], + [True, False], + [True, False, "mean", "std"], + [True, False], + [None, [0, 2]], + ["mse", "nll"], + ) + ) + ) + def test_forecast(self, mode, self_attn, scaling, gated_attn, prediction_channel_indices, loss): + params = self.__class__.params.copy() + params.update( + mode=mode, + self_attn=self_attn, + scaling=scaling, + prediction_channel_indices=prediction_channel_indices, + gated_attn=gated_attn, + loss=loss, + ) + + self.check_module(task="forecast", params=params) + + @parameterized.expand( + list( + itertools.product( + ["common_channel", "mix_channel"], + [True, False], + [True, False, "mean", "std"], + [True, False], + ["max_pool", "avg_pool"], + ) + ) + ) + def test_classification(self, mode, self_attn, scaling, gated_attn, head_aggregation): + params = self.__class__.params.copy() + params.update( + mode=mode, + self_attn=self_attn, + scaling=scaling, + head_aggregation=head_aggregation, + gated_attn=gated_attn, + ) + + self.check_module(task="classification", params=params) + + @parameterized.expand( + list( + itertools.product( + ["common_channel", "mix_channel"], + [True, False], + [True, False, "mean", "std"], + [True, False], + ["max_pool", "avg_pool"], + ["mse", "nll"], + ) + ) + ) + def test_regression(self, mode, self_attn, scaling, gated_attn, head_aggregation, loss): + params = self.__class__.params.copy() + params.update( + mode=mode, + self_attn=self_attn, + scaling=scaling, + head_aggregation=head_aggregation, + gated_attn=gated_attn, + loss=loss, + ) + + self.check_module(task="regression", params=params) + + @parameterized.expand( + list( + itertools.product( + ["common_channel", "mix_channel"], + [True, False], + [True, False, "mean", "std"], + [True, False], + ["random", "forecast"], + [True, False], + [True, False], + ) + ) + ) + def test_pretrain( + self, + mode, + self_attn, + scaling, + gated_attn, + mask_type, + masked_loss, + channel_consistent_masking, + ): + params = self.__class__.params.copy() + params.update( + mode=mode, + self_attn=self_attn, + scaling=scaling, + gated_attn=gated_attn, + mask_type=mask_type, + masked_loss=masked_loss, + channel_consistent_masking=channel_consistent_masking, + ) + + self.check_module(task="pretrain", params=params) + + def forecast_full_module(self, params=None, output_hidden_states=False, return_dict=None): + config = PatchTSMixerConfig(**params) + mdl = PatchTSMixerForPrediction(config) + + target_val = self.__class__.correct_forecast_output + + if config.prediction_channel_indices is not None: + target_val = self.__class__.correct_sel_forecast_output + + enc_output = self.__class__.enc_output + + output = mdl( + self.__class__.data, + future_values=self.__class__.correct_forecast_output, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if isinstance(output, tuple): + output = PatchTSMixerForPredictionOutput(*output) + + if config.loss == "mse": + self.assertEqual(output.prediction_outputs.shape, target_val.shape) + + self.assertEqual(output.last_hidden_state.shape, enc_output.shape) + + if output_hidden_states is True: + self.assertEqual(len(output.hidden_states), params["num_layers"]) + + else: + self.assertEqual(output.hidden_states, None) + + self.assertEqual(output.loss.item() < 100, True) + + if config.loss == "nll": + samples = mdl.generate(self.__class__.data) + ref_samples = target_val.unsqueeze(1).expand(-1, params["num_parallel_samples"], -1, -1) + self.assertEqual(samples.sequences.shape, ref_samples.shape) + + def test_forecast_full(self): + self.check_module(task="forecast", params=self.__class__.params, output_hidden_states=True) + # self.forecast_full_module(self.__class__.params, output_hidden_states = True) + + def test_forecast_full_2(self): + params = self.__class__.params.copy() + params.update( + mode="mix_channel", + ) + self.forecast_full_module(params, output_hidden_states=True) + + def test_forecast_full_2_with_return_dict(self): + params = self.__class__.params.copy() + params.update( + mode="mix_channel", + ) + self.forecast_full_module(params, output_hidden_states=True, return_dict=False) + + def test_forecast_full_3(self): + params = self.__class__.params.copy() + params.update( + mode="mix_channel", + ) + self.forecast_full_module(params, output_hidden_states=True) + + def test_forecast_full_5(self): + params = self.__class__.params.copy() + params.update( + self_attn=True, + use_positional_encoding=True, + positional_encoding="sincos", + ) + self.forecast_full_module(params, output_hidden_states=True) + + def test_forecast_full_4(self): + params = self.__class__.params.copy() + params.update( + mode="mix_channel", + prediction_channel_indices=[0, 2], + ) + self.forecast_full_module(params) + + def test_forecast_full_distributional(self): + params = self.__class__.params.copy() + params.update( + mode="mix_channel", + prediction_channel_indices=[0, 2], + loss="nll", + distribution_output="normal", + ) + + self.forecast_full_module(params) + + def test_forecast_full_distributional_2(self): + params = self.__class__.params.copy() + params.update( + mode="mix_channel", + prediction_channel_indices=[0, 2], + loss="nll", + # distribution_output = "normal", + ) + self.forecast_full_module(params) + + def test_forecast_full_distributional_3(self): + params = self.__class__.params.copy() + params.update( + mode="mix_channel", + # prediction_channel_indices=[0, 2], + loss="nll", + distribution_output="normal", + ) + self.forecast_full_module(params) + + def test_forecast_full_distributional_4(self): + params = self.__class__.params.copy() + params.update( + mode="mix_channel", + # prediction_channel_indices=[0, 2], + loss="nll", + distribution_output="normal", + ) + self.forecast_full_module(params) + + def test_classification_head(self): + config = PatchTSMixerConfig(**self.__class__.params) + head = PatchTSMixerLinearHead( + config=config, + ) + # output = head(self.__class__.enc_output, raw_data = self.__class__.correct_pretrain_output) + output = head(self.__class__.enc_output) + + self.assertEqual(output.shape, self.__class__.correct_classification_output.shape) + + def test_classification_full(self): + config = PatchTSMixerConfig(**self.__class__.params) + mdl = PatchTSMixerForTimeSeriesClassification(config) + output = mdl( + self.__class__.data, + future_values=self.__class__.correct_classification_classes, + ) + self.assertEqual( + output.prediction_outputs.shape, + self.__class__.correct_classification_output.shape, + ) + self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) + self.assertEqual(output.loss.item() < 100, True) + + def test_classification_full_with_return_dict(self): + config = PatchTSMixerConfig(**self.__class__.params) + mdl = PatchTSMixerForTimeSeriesClassification(config) + output = mdl( + self.__class__.data, + future_values=self.__class__.correct_classification_classes, + return_dict=False, + ) + if isinstance(output, tuple): + output = PatchTSMixerForTimeSeriesClassificationOutput(*output) + self.assertEqual( + output.prediction_outputs.shape, + self.__class__.correct_classification_output.shape, + ) + self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) + self.assertEqual(output.loss.item() < 100, True) + + def test_regression_head(self): + config = PatchTSMixerConfig(**self.__class__.params) + head = PatchTSMixerLinearHead( + config=config, + ) + output = head(self.__class__.enc_output) + self.assertEqual(output.shape, self.__class__.correct_regression_output.shape) + + def test_regression_full(self): + config = PatchTSMixerConfig(**self.__class__.params) + mdl = PatchTSMixerForRegression(config) + output = mdl(self.__class__.data, future_values=self.__class__.correct_regression_output) + self.assertEqual( + output.prediction_outputs.shape, + self.__class__.correct_regression_output.shape, + ) + self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) + self.assertEqual(output.loss.item() < 100, True) + + def test_regression_full_with_return_dict(self): + config = PatchTSMixerConfig(**self.__class__.params) + mdl = PatchTSMixerForRegression(config) + output = mdl( + self.__class__.data, + future_values=self.__class__.correct_regression_output, + return_dict=False, + ) + if isinstance(output, tuple): + output = PatchTSMixerForRegressionOutput(*output) + self.assertEqual( + output.prediction_outputs.shape, + self.__class__.correct_regression_output.shape, + ) + self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) + self.assertEqual(output.loss.item() < 100, True) + + def test_regression_full_distribute(self): + params = self.__class__.params.copy() + params.update(loss="nll", distribution_output="normal") + + config = PatchTSMixerConfig(**params) + + mdl = PatchTSMixerForRegression(config) + output = mdl(self.__class__.data, future_values=self.__class__.correct_regression_output) + self.assertEqual( + output.prediction_outputs[0].shape, + self.__class__.correct_regression_output.shape, + ) + self.assertEqual( + output.prediction_outputs[1].shape, + self.__class__.correct_regression_output.shape, + ) + self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) + self.assertEqual(output.loss.item() < 100, True) + + if config.loss == "nll": + samples = mdl.generate(self.__class__.data) + ref_samples = self.__class__.correct_regression_output.unsqueeze(1).expand( + -1, params["num_parallel_samples"], -1 + ) + self.assertEqual(samples.sequences.shape, ref_samples.shape) + + def test_regression_full_distribute_2(self): + params = self.__class__.params.copy() + params.update(loss="nll", distribution_output="student_t") + + config = PatchTSMixerConfig(**params) + + mdl = PatchTSMixerForRegression(config) + output = mdl(self.__class__.data, future_values=self.__class__.correct_regression_output) + self.assertEqual( + output.prediction_outputs[0].shape, + self.__class__.correct_regression_output.shape, + ) + self.assertEqual( + output.prediction_outputs[1].shape, + self.__class__.correct_regression_output.shape, + ) + self.assertEqual(output.last_hidden_state.shape, self.__class__.enc_output.shape) + self.assertEqual(output.loss.item() < 100, True) + + if config.loss == "nll": + samples = mdl.generate(self.__class__.data) + ref_samples = self.__class__.correct_regression_output.unsqueeze(1).expand( + -1, params["num_parallel_samples"], -1 + ) + self.assertEqual(samples.sequences.shape, ref_samples.shape) diff --git a/utils/check_repo.py b/utils/check_repo.py index 325d8e1eb276f2..aac06276234632 100644 --- a/utils/check_repo.py +++ b/utils/check_repo.py @@ -251,6 +251,8 @@ "Owlv2TextModel", "Owlv2VisionModel", "OwlViTForObjectDetection", + "PatchTSMixerForPrediction", + "PatchTSMixerForPretraining", "RagModel", "RagSequenceForGeneration", "RagTokenForGeneration",