|
79 | 79 | require_deepspeed,
|
80 | 80 | require_galore_torch,
|
81 | 81 | require_grokadamw,
|
82 |
| - require_intel_extension_for_pytorch, |
83 | 82 | require_liger_kernel,
|
84 | 83 | require_lomo,
|
85 | 84 | require_non_hpu,
|
@@ -1325,37 +1324,6 @@ def test_number_of_steps_in_training(self):
|
1325 | 1324 | train_output = trainer.train()
|
1326 | 1325 | self.assertEqual(train_output.global_step, 10)
|
1327 | 1326 |
|
1328 |
| - @require_torch_bf16 |
1329 |
| - @require_intel_extension_for_pytorch |
1330 |
| - def test_number_of_steps_in_training_with_ipex(self): |
1331 |
| - for mix_bf16 in [True, False]: |
1332 |
| - tmp_dir = self.get_auto_remove_tmp_dir() |
1333 |
| - # Regular training has n_epochs * len(train_dl) steps |
1334 |
| - trainer = get_regression_trainer( |
1335 |
| - learning_rate=0.1, use_ipex=True, bf16=mix_bf16, use_cpu=True, output_dir=tmp_dir |
1336 |
| - ) |
1337 |
| - train_output = trainer.train() |
1338 |
| - self.assertEqual(train_output.global_step, self.n_epochs * 64 / trainer.args.train_batch_size) |
1339 |
| - |
1340 |
| - # Check passing num_train_epochs works (and a float version too): |
1341 |
| - trainer = get_regression_trainer( |
1342 |
| - learning_rate=0.1, |
1343 |
| - num_train_epochs=1.5, |
1344 |
| - use_ipex=True, |
1345 |
| - bf16=mix_bf16, |
1346 |
| - use_cpu=True, |
1347 |
| - output_dir=tmp_dir, |
1348 |
| - ) |
1349 |
| - train_output = trainer.train() |
1350 |
| - self.assertEqual(train_output.global_step, int(1.5 * 64 / trainer.args.train_batch_size)) |
1351 |
| - |
1352 |
| - # If we pass a max_steps, num_train_epochs is ignored |
1353 |
| - trainer = get_regression_trainer( |
1354 |
| - learning_rate=0.1, max_steps=10, use_ipex=True, bf16=mix_bf16, use_cpu=True, output_dir=tmp_dir |
1355 |
| - ) |
1356 |
| - train_output = trainer.train() |
1357 |
| - self.assertEqual(train_output.global_step, 10) |
1358 |
| - |
1359 | 1327 | def test_torch_compile_loss_func_compatibility(self):
|
1360 | 1328 | config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
|
1361 | 1329 | tiny_llama = LlamaForCausalLM(config)
|
@@ -2628,69 +2596,6 @@ def test_evaluate_with_jit(self):
|
2628 | 2596 | expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
|
2629 | 2597 | self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
|
2630 | 2598 |
|
2631 |
| - @require_torch_bf16 |
2632 |
| - @require_intel_extension_for_pytorch |
2633 |
| - def test_evaluate_with_ipex(self): |
2634 |
| - for mix_bf16 in [True, False]: |
2635 |
| - with tempfile.TemporaryDirectory() as tmp_dir: |
2636 |
| - trainer = get_regression_trainer( |
2637 |
| - a=1.5, |
2638 |
| - b=2.5, |
2639 |
| - use_ipex=True, |
2640 |
| - compute_metrics=AlmostAccuracy(), |
2641 |
| - bf16=mix_bf16, |
2642 |
| - use_cpu=True, |
2643 |
| - output_dir=tmp_dir, |
2644 |
| - ) |
2645 |
| - results = trainer.evaluate() |
2646 |
| - |
2647 |
| - x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0] |
2648 |
| - pred = 1.5 * x + 2.5 |
2649 |
| - expected_loss = ((pred - y) ** 2).mean() |
2650 |
| - self.assertAlmostEqual(results["eval_loss"], expected_loss) |
2651 |
| - expected_acc = AlmostAccuracy()((pred, y))["accuracy"] |
2652 |
| - self.assertAlmostEqual(results["eval_accuracy"], expected_acc) |
2653 |
| - |
2654 |
| - # With a number of elements not a round multiple of the batch size |
2655 |
| - trainer = get_regression_trainer( |
2656 |
| - a=1.5, |
2657 |
| - b=2.5, |
2658 |
| - use_ipex=True, |
2659 |
| - eval_len=66, |
2660 |
| - compute_metrics=AlmostAccuracy(), |
2661 |
| - bf16=mix_bf16, |
2662 |
| - use_cpu=True, |
2663 |
| - output_dir=tmp_dir, |
2664 |
| - ) |
2665 |
| - results = trainer.evaluate() |
2666 |
| - |
2667 |
| - x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0] |
2668 |
| - pred = 1.5 * x + 2.5 |
2669 |
| - expected_loss = ((pred - y) ** 2).mean() |
2670 |
| - self.assertAlmostEqual(results["eval_loss"], expected_loss) |
2671 |
| - expected_acc = AlmostAccuracy()((pred, y))["accuracy"] |
2672 |
| - self.assertAlmostEqual(results["eval_accuracy"], expected_acc) |
2673 |
| - |
2674 |
| - # With logits preprocess |
2675 |
| - trainer = get_regression_trainer( |
2676 |
| - a=1.5, |
2677 |
| - b=2.5, |
2678 |
| - use_ipex=True, |
2679 |
| - compute_metrics=AlmostAccuracy(), |
2680 |
| - preprocess_logits_for_metrics=lambda logits, labels: logits + 1, |
2681 |
| - bf16=mix_bf16, |
2682 |
| - use_cpu=True, |
2683 |
| - output_dir=tmp_dir, |
2684 |
| - ) |
2685 |
| - results = trainer.evaluate() |
2686 |
| - |
2687 |
| - x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0] |
2688 |
| - pred = 1.5 * x + 2.5 |
2689 |
| - expected_loss = ((pred - y) ** 2).mean() |
2690 |
| - self.assertAlmostEqual(results["eval_loss"], expected_loss) |
2691 |
| - expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"] |
2692 |
| - self.assertAlmostEqual(results["eval_accuracy"], expected_acc) |
2693 |
| - |
2694 | 2599 | def test_predict(self):
|
2695 | 2600 | with tempfile.TemporaryDirectory() as tmp_dir:
|
2696 | 2601 | trainer = get_regression_trainer(a=1.5, b=2.5, output_dir=tmp_dir)
|
@@ -2830,57 +2735,6 @@ def test_predict_with_jit(self):
|
2830 | 2735 | self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
|
2831 | 2736 | self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))
|
2832 | 2737 |
|
2833 |
| - @require_torch_bf16 |
2834 |
| - @require_intel_extension_for_pytorch |
2835 |
| - def test_predict_with_ipex(self): |
2836 |
| - for mix_bf16 in [True, False]: |
2837 |
| - with tempfile.TemporaryDirectory() as tmp_dir: |
2838 |
| - trainer = get_regression_trainer( |
2839 |
| - a=1.5, b=2.5, use_ipex=True, bf16=mix_bf16, use_cpu=True, output_dir=tmp_dir |
2840 |
| - ) |
2841 |
| - preds = trainer.predict(trainer.eval_dataset).predictions |
2842 |
| - x = trainer.eval_dataset.x |
2843 |
| - self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) |
2844 |
| - |
2845 |
| - # With a number of elements not a round multiple of the batch size |
2846 |
| - trainer = get_regression_trainer( |
2847 |
| - a=1.5, b=2.5, eval_len=66, use_ipex=True, bf16=mix_bf16, use_cpu=True, output_dir=tmp_dir |
2848 |
| - ) |
2849 |
| - preds = trainer.predict(trainer.eval_dataset).predictions |
2850 |
| - x = trainer.eval_dataset.x |
2851 |
| - self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) |
2852 |
| - |
2853 |
| - # With more than one output of the model |
2854 |
| - trainer = get_regression_trainer( |
2855 |
| - a=1.5, b=2.5, double_output=True, use_ipex=True, bf16=mix_bf16, use_cpu=True, output_dir=tmp_dir |
2856 |
| - ) |
2857 |
| - preds = trainer.predict(trainer.eval_dataset).predictions |
2858 |
| - x = trainer.eval_dataset.x |
2859 |
| - self.assertEqual(len(preds), 2) |
2860 |
| - self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5)) |
2861 |
| - self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5)) |
2862 |
| - |
2863 |
| - # With more than one output/label of the model |
2864 |
| - trainer = get_regression_trainer( |
2865 |
| - a=1.5, |
2866 |
| - b=2.5, |
2867 |
| - double_output=True, |
2868 |
| - label_names=["labels", "labels_2"], |
2869 |
| - use_ipex=True, |
2870 |
| - bf16=mix_bf16, |
2871 |
| - use_cpu=True, |
2872 |
| - output_dir=tmp_dir, |
2873 |
| - ) |
2874 |
| - outputs = trainer.predict(trainer.eval_dataset) |
2875 |
| - preds = outputs.predictions |
2876 |
| - labels = outputs.label_ids |
2877 |
| - x = trainer.eval_dataset.x |
2878 |
| - self.assertEqual(len(preds), 2) |
2879 |
| - self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5)) |
2880 |
| - self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5)) |
2881 |
| - self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0])) |
2882 |
| - self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1])) |
2883 |
| - |
2884 | 2738 | def test_dynamic_shapes(self):
|
2885 | 2739 | eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
|
2886 | 2740 | model = RegressionModel(a=2, b=1)
|
|
0 commit comments