|
| 1 | +--- |
| 2 | +language: |
| 3 | +- en |
| 4 | +tags: |
| 5 | +- bluebert |
| 6 | +license: |
| 7 | +- PUBLIC DOMAIN NOTICE |
| 8 | +datasets: |
| 9 | +- pubmed |
| 10 | + |
| 11 | +--- |
| 12 | + |
| 13 | +# BlueBert-Base, Uncased, PubMed |
| 14 | + |
| 15 | +## Model description |
| 16 | + |
| 17 | +A BERT model pre-trained on PubMed abstracts |
| 18 | + |
| 19 | +## Intended uses & limitations |
| 20 | + |
| 21 | +#### How to use |
| 22 | + |
| 23 | +Please see https://github.com/ncbi-nlp/bluebert |
| 24 | + |
| 25 | +## Training data |
| 26 | + |
| 27 | +We provide [preprocessed PubMed texts](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/pubmed_uncased_sentence_nltk.txt.tar.gz) that were used to pre-train the BlueBERT models. |
| 28 | +The corpus contains ~4000M words extracted from the [PubMed ASCII code version](https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/). |
| 29 | + |
| 30 | +Pre-trained model: https://huggingface.co/bert-base-uncased |
| 31 | + |
| 32 | +## Training procedure |
| 33 | + |
| 34 | +* lowercasing the text |
| 35 | +* removing speical chars `\x00`-`\x7F` |
| 36 | +* tokenizing the text using the [NLTK Treebank tokenizer](https://www.nltk.org/_modules/nltk/tokenize/treebank.html) |
| 37 | + |
| 38 | +Below is a code snippet for more details. |
| 39 | + |
| 40 | +```python |
| 41 | +value = value.lower() |
| 42 | +value = re.sub(r'[\r\n]+', ' ', value) |
| 43 | +value = re.sub(r'[^\x00-\x7F]+', ' ', value) |
| 44 | + |
| 45 | +tokenized = TreebankWordTokenizer().tokenize(value) |
| 46 | +sentence = ' '.join(tokenized) |
| 47 | +sentence = re.sub(r"\s's\b", "'s", sentence) |
| 48 | +``` |
| 49 | + |
| 50 | +### BibTeX entry and citation info |
| 51 | + |
| 52 | +```bibtex |
| 53 | +@InProceedings{peng2019transfer, |
| 54 | + author = {Yifan Peng and Shankai Yan and Zhiyong Lu}, |
| 55 | + title = {Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets}, |
| 56 | + booktitle = {Proceedings of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019)}, |
| 57 | + year = {2019}, |
| 58 | + pages = {58--65}, |
| 59 | +} |
| 60 | +``` |
0 commit comments