From 550a5ef410d8d515ebfe378506ccd77c2b401d50 Mon Sep 17 00:00:00 2001 From: Nicolas Patry Date: Sat, 30 Nov 2024 18:53:33 +0100 Subject: [PATCH] Saving some VRAM. - 8B on 4xL4 attention=flashdecoding . Before 4.28GB left, After 4.32GB left, so 400MB saved. - Effect not as visible on attention=flashinfer and n_shard=1. I suspect it's linked to the torch allocator. --- .../models/flash_causal_lm.py | 53 ++++++++++++------- 1 file changed, 34 insertions(+), 19 deletions(-) diff --git a/server/text_generation_server/models/flash_causal_lm.py b/server/text_generation_server/models/flash_causal_lm.py index 36f70180fab..33888fe4f47 100644 --- a/server/text_generation_server/models/flash_causal_lm.py +++ b/server/text_generation_server/models/flash_causal_lm.py @@ -1389,29 +1389,44 @@ def init_kv_cache( ] def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int): - input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device) - position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device) - slots = torch.arange(bs, dtype=torch.int64, device=self.device) + max_bs = max(self.cuda_graphs.keys()) if self.cuda_graphs else None input_lengths = [max_s] * bs cache_lengths = [0] * bs - input_lengths_tensor = ( - torch.ones(bs, dtype=torch.int32, device=self.device) * max_s - ) - cache_lengths_tensor = torch.zeros(bs, dtype=torch.int32, device=self.device) - block_tables = torch.arange( - max_bt, dtype=torch.int32, device=self.device - ).repeat(bs) - block_tables = block_tables.reshape((bs, max_bt)) + if max_bs is None: + input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device) + position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device) + slots = torch.arange(bs, dtype=torch.int64, device=self.device) + input_lengths_tensor = ( + torch.ones(bs, dtype=torch.int32, device=self.device) * max_s + ) + cache_lengths_tensor = torch.zeros( + bs, dtype=torch.int32, device=self.device + ) + block_tables = torch.arange( + max_bt, dtype=torch.int32, device=self.device + ).repeat(bs) + block_tables = block_tables.reshape((bs, max_bt)) + if ATTENTION == "flashinfer": + block_tables = block_tables_to_ragged( + block_tables=block_tables, + input_lengths=input_lengths, + cache_lengths=cache_lengths, + input_lengths_tensor=input_lengths_tensor, + cache_lengths_tensor=cache_lengths_tensor, + max_current_length=max_s, + ) + else: + input_ids = self.cuda_graphs[max_bs]["input_ids"][:bs] + position_ids = self.cuda_graphs[max_bs]["position_ids"][:bs] + if ATTENTION == "flashinfer": + block_tables = self.cuda_graphs[max_bs]["block_tables"][: bs * max_bt] + else: + block_tables = self.cuda_graphs[max_bs]["block_tables"][:bs] + slots = self.cuda_graphs[max_bs]["slots"][:bs] + input_lengths_tensor = self.cuda_graphs[max_bs]["input_lengths"][:bs] + cache_lengths_tensor = self.cuda_graphs[max_bs]["cache_lengths"][:bs] if ATTENTION == "flashinfer": - block_tables = block_tables_to_ragged( - block_tables=block_tables, - input_lengths=input_lengths, - cache_lengths=cache_lengths, - input_lengths_tensor=input_lengths_tensor, - cache_lengths_tensor=cache_lengths_tensor, - max_current_length=max_s, - ) from text_generation_server.layers.attention.flashinfer import ( create_decode_state_cuda_graphs, )