Skip to content

[FEATURE] Support Tied-Augment #1828

Open
@ekurtulus

Description

@ekurtulus

Recently, we introduced Tied-Augment, a simple framework that combines self-supervised learning learning and supervised learning by making forward passes on two augmented views of the data with tied (shared) weights. In addition to the classification loss, it adds a similarity term to enforce invariance between the features of the augmented views. We found that our framework can be used to improve the effectiveness of both simple flips-and-crops (Crop-Flip) and aggressive augmentations (RandAugment) even for few-epoch training. As the effect of data augmentation is amplified, the sample efficiency of the data increases.

I believe Tied-Augment would be a nice addition to Timm training script. It can significantly improve mixup/RandAugment (77.6% → 79.6%) with marginal extra cost. Here is my reference implementation.

Metadata

Metadata

Assignees

No one assigned

    Labels

    enhancementNew feature or request

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions