-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathtest_examples.py
684 lines (580 loc) · 23.8 KB
/
test_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests every (architecture, task) supported pair on 🤗 Transformers training example scripts."""
import json
import os
import re
import sys
from enum import Enum
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, TypeVar, Union
from unittest import TestCase
from huggingface_hub import get_token
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_CTC_MAPPING,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
)
from transformers.testing_utils import slow
from optimum.neuron.distributed.parallelizers_manager import ParallelizersManager
from optimum.neuron.utils.cache_utils import load_custom_cache_repo_name_from_hf_home
from optimum.neuron.utils.import_utils import is_neuronx_distributed_available
from optimum.neuron.utils.misc import string_to_bool
from optimum.neuron.utils.runner import ExampleRunner
from optimum.neuron.utils.testing_utils import is_trainium_test
from .utils import TrainiumTestMixin
# Doing it this way to be able to use this file in tools.
path_tests = Path(__file__).parent
sys.path.insert(0, str(path_tests))
T = TypeVar("T")
TypeOrDictOfType = Union[T, Dict[str, T]]
TOKEN = get_token()
if os.environ.get("HF_TOKEN", None) is not None:
TOKEN = os.environ.get("HF_TOKEN")
DEFAULT_CACHE_REPO = "optimum-internal-testing/optimum-neuron-cache-for-testing"
SAVED_CUSTOM_CACHE_REPO = load_custom_cache_repo_name_from_hf_home()
CUSTOM_CACHE_REPO = os.environ.get("CUSTOM_CACHE_REPO", None)
if SAVED_CUSTOM_CACHE_REPO is None and CUSTOM_CACHE_REPO is None:
os.environ["CUSTOM_CACHE_REPO"] = DEFAULT_CACHE_REPO
class TPSupport(str, Enum):
"""
Describes the support for Tensor Parallelism for a given model:
- full: The model can be fully parallelized (embeddings + blocks + cross-entropy loss when it makes sense).
- partial: The model can be parallelized but not the embeddings. Usually because the vocabulary size is not
divisible by the tensor parallel size (2 here).
- none: The model cannot be parallelized, either for shape mismatch as in the partial case, or because the
tensor parallelism support for this model type has not been added.
"""
FULL = "full"
PARTIAL = "partial"
NONE = "none"
class Coverage(str, Enum):
LOW = "low"
MIDDLE = "middle"
HIGH = "high"
ALL = "all"
USE_VENV = string_to_bool(os.environ.get("USE_VENV", "false"))
COVERAGE = Coverage(os.environ.get("COVERAGE", "all"))
RUN_TINY = string_to_bool(os.environ.get("RUN_TINY", "false"))
MODELS_TO_TEST_MAPPING = {
"albert": (
"albert-base-v2",
TPSupport.NONE,
Coverage.LOW,
{"num_hidden_layers": 4},
),
"bart": (
"facebook/bart-base",
TPSupport.NONE,
Coverage.MIDDLE,
{"encoder_layers": 2, "decoder_layers": 2},
),
"bert": (
"bert-base-uncased",
TPSupport.FULL,
Coverage.HIGH,
{"num_hidden_layers": 4},
),
"camembert": (
"camembert-base",
TPSupport.NONE,
Coverage.LOW,
{"num_hidden_layers": 4},
),
"distilbert": (
"distilbert-base-uncased",
TPSupport.NONE,
Coverage.LOW,
{"num_hidden_layers": 4},
),
"electra": (
"google/electra-base-discriminator",
TPSupport.NONE,
Coverage.LOW,
{"num_hidden_layers": 4},
),
"gpt2": (
"gpt2",
TPSupport.NONE,
Coverage.MIDDLE,
{"num_hidden_layers": 4},
),
"gpt_neo": (
"EleutherAI/gpt-neo-125M",
TPSupport.PARTIAL,
Coverage.HIGH,
{"num_hidden_layers": 4, "attention_types": [[["global", "local"], 2]]},
),
"marian": (
"Helsinki-NLP/opus-mt-en-ro",
TPSupport.NONE,
Coverage.MIDDLE,
{"encoder_layers": 2, "decoder_layers": 2},
),
"roberta": (
"roberta-base",
TPSupport.PARTIAL,
Coverage.LOW,
{"num_hidden_layers": 4},
),
"t5": (
"t5-small",
TPSupport.FULL,
Coverage.HIGH,
{"num_hidden_layers": 2},
),
"vit": (
"google/vit-base-patch16-224-in21k",
TPSupport.NONE,
Coverage.HIGH,
{"num_hidden_layers": 4},
),
"xlm-roberta": (
"xlm-roberta-base",
TPSupport.NONE,
Coverage.LOW,
{"num_hidden_layers": 4},
),
# TODO: issue with this model for now.
"m2m_100": (
"facebook/m2m100_418M",
TPSupport.NONE,
Coverage.MIDDLE,
{"encoder_layers": 2, "decoder_layers": 2},
),
"llama": (
"NousResearch/Llama-2-7b-hf",
TPSupport.FULL,
Coverage.HIGH,
{"num_hidden_layers": 2},
),
"mistral": (
"mistralai/Mistral-7B-v0.1",
TPSupport.FULL,
Coverage.HIGH,
{"num_hidden_layers": 2},
),
# "wav2vec2": "facebook/wav2vec2-base",
# Remaning: XLNet, Deberta-v2, MPNet, CLIP
}
def _get_supported_models_for_script(
models_to_test: Dict[str, str], task_mapping: Dict[str, str], to_exclude: Optional[Set[str]] = None
) -> List[Tuple[str, str, TPSupport, Dict[str, Any]]]:
"""
Filters models that can perform the task from models_to_test.
"""
if to_exclude is None:
to_exclude = set()
supported_models = []
for model_type, entry in models_to_test.items():
model_name, tp_support, coverage, config_overrides = entry
if model_type in to_exclude:
continue
if COVERAGE != "all" and COVERAGE != coverage:
continue
if CONFIG_MAPPING[model_type] in task_mapping:
if model_type == "bart" and task_mapping is not MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING:
continue
supported_models.append((model_type, model_name, tp_support, config_overrides))
return supported_models
_SCRIPT_TO_MODEL_MAPPING = {
"run_clm": _get_supported_models_for_script(
MODELS_TO_TEST_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
to_exclude={"bart", "bert", "camembert", "electra", "roberta", "xlm-roberta"},
),
"run_mlm": _get_supported_models_for_script(MODELS_TO_TEST_MAPPING, MODEL_FOR_MASKED_LM_MAPPING),
"run_swag": _get_supported_models_for_script(MODELS_TO_TEST_MAPPING, MODEL_FOR_MULTIPLE_CHOICE_MAPPING),
"run_qa": _get_supported_models_for_script(
MODELS_TO_TEST_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, to_exclude={"gpt2", "gpt_neo", "bart", "t5"}
),
"run_summarization": _get_supported_models_for_script(
MODELS_TO_TEST_MAPPING, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, to_exclude={"marian", "m2m_100"}
),
"run_translation": _get_supported_models_for_script(
MODELS_TO_TEST_MAPPING, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
),
"run_glue": _get_supported_models_for_script(
MODELS_TO_TEST_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, to_exclude={"gpt2", "gpt_neo", "bart", "t5"}
),
"run_ner": _get_supported_models_for_script(
MODELS_TO_TEST_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, to_exclude={"gpt2", "gpt_neo"}
),
"run_image_classification": _get_supported_models_for_script(
MODELS_TO_TEST_MAPPING, MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
),
"run_audio_classification": _get_supported_models_for_script(
MODELS_TO_TEST_MAPPING, MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
),
"run_speech_recognition_ctc": _get_supported_models_for_script(MODELS_TO_TEST_MAPPING, MODEL_FOR_CTC_MAPPING),
}
class ExampleTestMeta(type):
"""
Metaclass that takes care of creating the proper example tests for a given task.
It uses example_name to figure out which models support this task, and create a run example test for each of these
models.
"""
def __new__(cls, name, bases, attrs, example_name=None):
if not is_neuronx_distributed_available():
return
models_to_test = []
if example_name is not None:
models_to_test = _SCRIPT_TO_MODEL_MAPPING.get(example_name)
if models_to_test is None:
raise AttributeError(f"could not create class because no model was found for example {example_name}")
for model_type, model_name_or_path, tp_support, config_overrides in models_to_test:
# Regular training.
attrs[f"test_{example_name}_{model_type}"] = cls._create_test(
model_type, model_name_or_path, 1, 1, True, False, config_overrides
)
# Training with ZeRO-1.
# TODO: enable this once fix from #222 is merged.
# attrs[f"test_{example_name}_{model_type}_with_zero1"] = cls._create_test(
# model_type, model_name_or_path, 1, True, True, config_overrides
# )
is_tp_supported, _, is_pp_supported = ParallelizersManager.is_model_supported(model_type)
tensor_parallel_size = 2 if is_tp_supported else 1
pipeline_parallel_size = 4 if is_pp_supported else 1
disable_embedding_parallelization = tp_support is TPSupport.PARTIAL
if tensor_parallel_size > 1:
# Training with TP if supported.
attrs[f"test_{example_name}_{model_type}_with_tp_only"] = cls._create_test(
model_type,
model_name_or_path,
tensor_parallel_size,
1, # No pipeline parallelism in this test.
disable_embedding_parallelization,
False,
config_overrides,
)
# Training with TP and ZeRO-1 if supported.
# TODO: enable this once fix from #222 is merged.
# attrs[f"test_{example_name}_{model_type}_with_tp_and_zero1"] = cls._create_test(
# model_type,
# model_name_or_path,
# tensor_parallel_size,
# 1, # No pipeline parallelism in this test.
# disable_embedding_parallelization,
# True,
# config_overrides,
# )
if pipeline_parallel_size > 1:
# Training with PP if supported.
attrs[f"test_{example_name}_{model_type}_with_pp_only"] = cls._create_test(
model_type,
model_name_or_path,
1, # No tensor parallelism in this test.
pipeline_parallel_size,
disable_embedding_parallelization,
False,
config_overrides,
)
if tensor_parallel_size > 1 and pipeline_parallel_size > 1:
attrs[f"test_{example_name}_{model_type}_with_tp_and_pp"] = cls._create_test(
model_type,
model_name_or_path,
tensor_parallel_size,
pipeline_parallel_size,
disable_embedding_parallelization,
False,
config_overrides,
)
# TODO: enable when working on the multi-node training PR.
# attrs[f"test_{example_name}_{model_type}_with_tp_and_pp_and_zero1"] = cls._create_test(
# model_type,
# model_name_or_path,
# tensor_parallel_size,
# pipeline_parallel_size,
# disable_embedding_parallelization,
# True,
# config_overrides,
# )
attrs["EXAMPLE_NAME"] = example_name
return super().__new__(cls, name, bases, attrs)
@staticmethod
def process_class_attribute(attribute: Union[Any, Dict[str, Any]], model_type: str) -> Any:
if isinstance(attribute, dict):
return attribute.get(model_type, attribute["default"])
return attribute
@staticmethod
def parse_loss_from_log(log: str) -> List[float]:
pattern = re.compile(r"{'loss': ([0-9]+\.[0-9]+),.*?}")
losses = []
for match_ in re.finditer(pattern, log):
losses.append(float(match_.group(1)))
return losses
@staticmethod
def check_that_loss_is_decreasing(
losses: List[float], window_size: int, allowed_miss_rate: float = 0.1
) -> Tuple[bool, List[float]]:
def moving_average(values: List[float], window_size: int):
averages = []
n = len(values)
for i in range(n - window_size + 1):
window = values[i : i + window_size]
averages.append(sum(window) / window_size)
return averages
moving_average_losses = moving_average(losses, window_size)
num_losses = len(moving_average_losses)
num_misses = 0
num_misses_allowed = int(num_losses * allowed_miss_rate)
for x, y in zip(moving_average_losses[:-1], moving_average_losses[1:]):
if x > y:
num_misses += 1
return num_misses <= num_misses_allowed, moving_average_losses
@classmethod
def _create_test(
cls,
model_type: str,
model_name_or_path: str,
tensor_parallel_size: int,
pipeline_parallel_size: int,
disable_embedding_parallelization: bool,
zero_1: bool,
config_overrides: Optional[Dict[str, Any]] = None,
) -> Callable[["ExampleTesterBase"], None]:
"""
Creates a test function that runs an example for a model_name.
Returns:
`Callable[[ExampleTesterBase], None]`: The test function that runs the example.
"""
@slow
@is_trainium_test
def test(self):
train_batch_size = ExampleTestMeta.process_class_attribute(self.TRAIN_BATCH_SIZE, model_type)
eval_batch_size = ExampleTestMeta.process_class_attribute(self.EVAL_BATCH_SIZE, model_type)
sequence_length = ExampleTestMeta.process_class_attribute(self.SEQUENCE_LENGTH, model_type)
gradient_accumulation_steps = ExampleTestMeta.process_class_attribute(
self.GRADIENT_ACCUMULATION_STEPS, model_type
)
runner = ExampleRunner(
model_name_or_path,
self.TASK_NAME,
example_dir=self.EXAMPLE_DIR,
use_venv=USE_VENV,
config_overrides=config_overrides if RUN_TINY else None,
)
# TP = 2, NUM_CORES = 32 (DP = 16) seems to be an unsupported topology.
num_cores = 8 if tensor_parallel_size > 1 else self.NUM_CORES
with TemporaryDirectory() as tmpdirname:
returncode, stdout = runner.run(
num_cores,
"bf16",
train_batch_size,
sequence_length=sequence_length,
do_eval=self.DO_EVAL,
eval_batch_size=eval_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
num_epochs=self.NUM_EPOCHS,
max_steps=self.MAX_STEPS,
max_eval_samples=self.MAX_EVAL_SAMPLES,
save_steps=self.SAVE_STEPS,
save_total_limit=1,
learning_rate=self.LEARNING_RATE,
tensor_parallel_size=tensor_parallel_size,
pipeline_parallel_size=pipeline_parallel_size,
disable_embedding_parallelization=disable_embedding_parallelization,
zero_1=zero_1,
output_dir=tmpdirname,
do_precompilation=True,
print_outputs=True,
_disable_is_private_model_repo_check=True,
)
assert returncode == 0
if self.CHECK_THAT_LOSS_IS_DECREASING:
losses = ExampleTestMeta.parse_loss_from_log(stdout)
allowed_miss_rate = 0.20
is_decreasing, moving_average_losses = ExampleTestMeta.check_that_loss_is_decreasing(
# The loss might stagnate at some point, so we only check that the first 200 losses are
# decreasing on average.
losses[200:],
4,
allowed_miss_rate=allowed_miss_rate,
)
self.assertTrue(
is_decreasing,
f"The moving average loss does not decrease as expected: {moving_average_losses} (allowed miss "
"rate = {allowed_miss_rate})",
)
if not RUN_TINY and self.DO_EVAL:
with open(Path(tmpdirname) / "all_results.json") as fp:
results = json.load(fp)
eval_score_threshold = ExampleTestMeta.process_class_attribute(
self.EVAL_SCORE_THRESHOLD, model_type
)
if self.EVAL_SCORE_GREATER_IS_BETTER:
self.assertGreaterEqual(float(results[self.SCORE_NAME]), eval_score_threshold)
else:
self.assertLessEqual(float(results[self.SCORE_NAME]), eval_score_threshold)
return test
class ExampleTesterBase(TrainiumTestMixin, TestCase):
"""
Base example tester class.
"""
EXAMPLE_DIR = Path(__file__).parent.parent / "examples"
TASK_NAME: str
NUM_EPOCHS: int = 1
MAX_STEPS: Optional[int] = None
LEARNING_RATE: TypeOrDictOfType[float] = 1e-4
TRAIN_BATCH_SIZE: TypeOrDictOfType[int] = 2
EVAL_BATCH_SIZE: TypeOrDictOfType[int] = 2
GRADIENT_ACCUMULATION_STEPS: TypeOrDictOfType[int] = 1
SEQUENCE_LENGTH: TypeOrDictOfType[Optional[Union[int, Tuple[int, int], List[int]]]] = None
NUM_CORES: int = 32
LOGGING_STEPS: int = 1
SAVE_STEPS: int = 200
TRAIN_LOSS_THRESHOLD: float
CHECK_THAT_LOSS_IS_DECREASING: TypeOrDictOfType[bool] = True
# Camembert is pretrained on French.
DO_EVAL: TypeOrDictOfType[bool]
MAX_EVAL_SAMPLES: Optional[int] = None
EVAL_SCORE_THRESHOLD: TypeOrDictOfType[float]
EVAL_SCORE_GREATER_IS_BETTER: bool
SCORE_NAME: str
class CausalLMExampleTester(ExampleTesterBase, metaclass=ExampleTestMeta, example_name="run_clm"):
TASK_NAME = "causal-lm"
MAX_STEPS = 200
TRAIN_BATCH_SIZE = 2
EVAL_BATCH_SIZE = 2
SEQUENCE_LENGTH = 512
TRAIN_LOSS_THRESHOLD = 1.5
DO_EVAL = False
MAX_EVAL_SAMPLES = 200
class TextClassificationExampleTester(ExampleTesterBase, metaclass=ExampleTestMeta, example_name="run_glue"):
TASK_NAME = "text-classification"
MAX_STEPS = 200
SEQUENCE_LENGTH = 128
TRAIN_LOSS_THRESHOLD = 0.5
# Camembert is pretrained on French.
DO_EVAL = False # TODO: Evaluation is broken.
MAX_EVAL_SAMPLES = 200
EVAL_SCORE_THRESHOLD = {"default": 0.75, "camembert": 0.5}
EVAL_SCORE_GREATER_IS_BETTER = True
SCORE_NAME = "eval_accuracy"
class TokenClassificationExampleTester(ExampleTesterBase, metaclass=ExampleTestMeta, example_name="run_ner"):
TASK_NAME = "token-classification"
NUM_EPOCHS = 1
MAX_STEPS = 200
TRAIN_BATCH_SIZE = {"default": 4, "distilbert": 6}
EVAL_BATCH_SIZE = {"default": 4, "distilbert": 6}
SEQUENCE_LENGTH = 384
TRAIN_LOSS_THRESHOLD = 0.5
# Camembert is pretrained on French.
DO_EVAL = False # TODO: Evaluation is broken.
MAX_EVAL_SAMPLES = 200
EVAL_SCORE_THRESHOLD = {"default": 0.75, "camembert": 0.5}
EVAL_SCORE_GREATER_IS_BETTER = True
SCORE_NAME = "eval_accuracy"
class MultipleChoiceExampleTester(ExampleTesterBase, metaclass=ExampleTestMeta, example_name="run_swag"):
TASK_NAME = "multiple-choice"
MAX_STEPS = 200
TRAIN_BATCH_SIZE = 2
EVAL_BATCH_SIZE = 2
SEQUENCE_LENGTH = 512
TRAIN_LOSS_THRESHOLD = 0.5
# Camembert is pretrained on French.
DO_EVAL = False # TODO: Evaluation is broken.
MAX_EVAL_SAMPLES = 200
EVAL_SCORE_THRESHOLD = {"default": 0.75, "camembert": 0.5, "distilbert": 0.645}
EVAL_SCORE_GREATER_IS_BETTER = True
SCORE_NAME = "eval_accuracy"
class QuestionAnsweringExampleTester(ExampleTesterBase, metaclass=ExampleTestMeta, example_name="run_qa"):
TASK_NAME = "question-answering"
MAX_STEPS = 200
TRAIN_BATCH_SIZE = 2
EVAL_BATCH_SIZE = 2
SEQUENCE_LENGTH = 384
TRAIN_LOSS_THRESHOLD = 0.5
DO_EVAL = False # TODO: Evaluation is broken.
MAX_EVAL_SAMPLES = 200
EVAL_SCORE_THRESHOLD = {"default": 0.75, "camembert": 0.5}
EVAL_SCORE_GREATER_IS_BETTER = True
SCORE_NAME = "eval_f1"
class SummarizationExampleTester(ExampleTesterBase, metaclass=ExampleTestMeta, example_name="run_summarization"):
TASK_NAME = "summarization"
MAX_STEPS = 200
TRAIN_BATCH_SIZE = 2
EVAL_BATCH_SIZE = 2
SEQUENCE_LENGTH = {"default": [1024, 200], "t5": [768, 200]}
TRAIN_LOSS_THRESHOLD = 0.5
DO_EVAL = False # TODO: Evaluation is broken.
MAX_EVAL_SAMPLES = 200
EVAL_SCORE_THRESHOLD = 30
SCORE_NAME = "eval_rougeLsum"
class TranslationExampleTester(ExampleTesterBase, metaclass=ExampleTestMeta, example_name="run_translation"):
TASK_NAME = "translation"
MAX_STEPS = 200
TRAIN_BATCH_SIZE = 2
EVAL_BATCH_SIZE = 2
SEQUENCE_LENGTH = {"default": [512, 512], "m2m_100": [128, 128]}
DO_EVAL = False
MAX_EVAL_SAMPLES = 200
EVAL_SCORE_THRESHOLD = 22
SCORE_NAME = "eval_bleu"
class ImageClassificationExampleTester(
ExampleTesterBase, metaclass=ExampleTestMeta, example_name="run_image_classification"
):
TASK_NAME = "image-classification"
MAX_STEPS = 200
TRAIN_BATCH_SIZE = 2
EVAL_BATCH_SIZE = 2
TRAIN_LOSS_THRESHOLD = 0.5
DO_EVAL = False # TODO: Evaluation is broken.
MAX_EVAL_SAMPLES = 200
EVAL_SCORE_THRESHOLD = 0.8
EVAL_SCORE_GREATER_IS_BETTER = True
SCORE_NAME = "eval_accuracy"
# class AudioClassificationExampleTester(
# ExampleTesterBase, metaclass=ExampleTestMeta, example_name="run_audio_classification"
# ):
# TASK_NAME = "superb"
# DATASET_CONFIG_NAME = "ks"
# GRADIENT_ACCUMULATION_STEPS = 16
# EXTRA_COMMAND_LINE_ARGUMENTS = ["--max_length_seconds 1", "--attention_mask False"]
# LEARNING_RATE = 3e-5
#
#
# class SpeechRecognitionExampleTester(
# ExampleTesterBase, metaclass=ExampleTestMeta, example_name="run_speech_recognition_ctc"
# ):
# TASK_NAME = "common_voice"
# DATASET_CONFIG_NAME = "tr"
# TRAIN_BATCH_SIZE = 1
# GRADIENT_ACCUMULATION_STEPS = 8
# EVAL_BATCH_SIZE = 1
# NUM_EPOCHS = 15
# # Here we are evaluating against the loss because it can take a long time to have wer < 1.0
# SCORE_NAME = "eval_loss"
# EVAL_SCORE_THRESHOLD = 4
# EVAL_SCORE_GREATER_IS_BETTER = False
# EXTRA_COMMAND_LINE_ARGUMENTS = [
# "--learning_rate 3e-4",
# "--warmup_steps 400",
# "--mask_time_prob 0.0",
# "--layerdrop 0.0",
# "--freeze_feature_encoder",
# "--text_column_name sentence",
# "--length_column_name input_length",
# '--chars_to_ignore , ? . ! - \\; \\: \\" “ % ‘ ” � ',
# ]