Skip to content

Change timestep device to cpu for xla #11501

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion src/diffusers/pipelines/allegro/pipeline_allegro.py
Original file line number Diff line number Diff line change
Expand Up @@ -863,7 +863,13 @@ def __call__(
prompt_embeds = prompt_embeds.unsqueeze(1) # b l d -> b 1 l d

# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, timestep_device, timesteps
)
self.scheduler.set_timesteps(num_inference_steps, device=device)

# 5. Prepare latents.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -897,16 +897,20 @@ def __call__(
dtype = self.dtype

# 3. Prepare timesteps
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
if not enforce_inference_steps:
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas
self.scheduler, num_inference_steps, timestep_device, timesteps, sigmas
)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
else:
denoising_inference_steps = int(num_inference_steps / strength)
timesteps, denoising_inference_steps = retrieve_timesteps(
self.scheduler, denoising_inference_steps, device, timesteps, sigmas
self.scheduler, denoising_inference_steps, timestep_device, timesteps, sigmas
)
timesteps = timesteps[-num_inference_steps:]
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1100,16 +1100,20 @@ def __call__(
dtype = self.dtype

# 3. Prepare timesteps
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
if not enforce_inference_steps:
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas
self.scheduler, num_inference_steps, timestep_device, timesteps, sigmas
)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
else:
denoising_inference_steps = int(num_inference_steps / strength)
timesteps, denoising_inference_steps = retrieve_timesteps(
self.scheduler, denoising_inference_steps, device, timesteps, sigmas
self.scheduler, denoising_inference_steps, timestep_device, timesteps, sigmas
)
timesteps = timesteps[-num_inference_steps:]
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
Expand Down
8 changes: 7 additions & 1 deletion src/diffusers/pipelines/aura_flow/pipeline_aura_flow.py
Original file line number Diff line number Diff line change
Expand Up @@ -596,7 +596,13 @@ def __call__(
# 4. Prepare timesteps

# sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, timestep_device, sigmas=sigmas
)

# 5. Prepare latents.
latent_channels = self.transformer.config.in_channels
Expand Down
8 changes: 7 additions & 1 deletion src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
Original file line number Diff line number Diff line change
Expand Up @@ -664,7 +664,13 @@ def __call__(
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)

# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, timestep_device, timesteps
)
self._num_timesteps = len(timesteps)

# 5. Prepare latents
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -717,7 +717,13 @@ def __call__(
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)

# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, timestep_device, timesteps
)
self._num_timesteps = len(timesteps)

# 5. Prepare latents
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -766,7 +766,13 @@ def __call__(
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)

# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, timestep_device, timesteps
)
self._num_timesteps = len(timesteps)

# 5. Prepare latents
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -737,7 +737,13 @@ def __call__(
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)

# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, timestep_device, timesteps
)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
self._num_timesteps = len(timesteps)
Expand Down
8 changes: 7 additions & 1 deletion src/diffusers/pipelines/cogview3/pipeline_cogview3plus.py
Original file line number Diff line number Diff line change
Expand Up @@ -566,7 +566,13 @@ def __call__(
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)

# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, timestep_device, timesteps
)
self._num_timesteps = len(timesteps)

# 5. Prepare latents.
Expand Down
6 changes: 5 additions & 1 deletion src/diffusers/pipelines/cogview4/pipeline_cogview4.py
Original file line number Diff line number Diff line change
Expand Up @@ -599,8 +599,12 @@ def __call__(
self.scheduler.config.get("base_shift", 0.25),
self.scheduler.config.get("max_shift", 0.75),
)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu
self.scheduler, num_inference_steps, timestep_device, timesteps, sigmas, mu=mu
)
self._num_timesteps = len(timesteps)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -649,8 +649,12 @@ def __call__(
self.scheduler.config.get("base_shift", 0.25),
self.scheduler.config.get("max_shift", 0.75),
)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu
self.scheduler, num_inference_steps, timestep_device, timesteps, sigmas, mu=mu
)
self._num_timesteps = len(timesteps)
# Denoising loop
Expand Down
6 changes: 5 additions & 1 deletion src/diffusers/pipelines/controlnet/pipeline_controlnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -1195,8 +1195,12 @@ def __call__(
assert False

# 5. Prepare timesteps
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas
self.scheduler, num_inference_steps, timestep_device, timesteps, sigmas
)
self._num_timesteps = len(timesteps)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1357,8 +1357,12 @@ def __call__(
assert False

# 5. Prepare timesteps
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas
self.scheduler, num_inference_steps, timestep_device, timesteps, sigmas
)
self._num_timesteps = len(timesteps)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1351,8 +1351,12 @@ def __call__(
height, width = control_image[0][0].shape[-2:]

# 5. Prepare timesteps
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas
self.scheduler, num_inference_steps, timestep_device, timesteps, sigmas
)
self._num_timesteps = len(timesteps)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1098,7 +1098,13 @@ def __call__(
assert False

# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, timestep_device, sigmas=sigmas
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1129,7 +1129,13 @@ def __call__(
controlnet_pooled_projections = controlnet_pooled_projections or pooled_prompt_embeds

# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, timestep_device, sigmas=sigmas
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)

Expand Down
10 changes: 8 additions & 2 deletions src/diffusers/pipelines/easyanimate/pipeline_easyanimate.py
Original file line number Diff line number Diff line change
Expand Up @@ -666,12 +666,18 @@ def __call__(
)

# 4. Prepare timesteps
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, mu=1
self.scheduler, num_inference_steps, timestep_device, timesteps, mu=1
)
else:
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, timestep_device, timesteps
)

# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -810,12 +810,18 @@ def __call__(
)

# 4. Prepare timesteps
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, mu=1
self.scheduler, num_inference_steps, timestep_device, timesteps, mu=1
)
else:
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, timestep_device, timesteps
)
timesteps = self.scheduler.timesteps

# 5. Prepare latent variables
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -955,12 +955,18 @@ def __call__(
)

# 4. set timesteps
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, mu=1
self.scheduler, num_inference_steps, timestep_device, timesteps, mu=1
)
else:
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, timestep_device, timesteps
)
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps=num_inference_steps, strength=strength, device=device
)
Expand Down
7 changes: 6 additions & 1 deletion src/diffusers/pipelines/flux/pipeline_flux.py
Original file line number Diff line number Diff line change
Expand Up @@ -848,10 +848,15 @@ def __call__(
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.15),
)

if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timestep_device,
sigmas=sigmas,
mu=mu,
)
Expand Down
6 changes: 5 additions & 1 deletion src/diffusers/pipelines/flux/pipeline_flux_control.py
Original file line number Diff line number Diff line change
Expand Up @@ -804,10 +804,14 @@ def __call__(
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.15),
)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timestep_device,
sigmas=sigmas,
mu=mu,
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -810,10 +810,14 @@ def __call__(
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.15),
)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timestep_device,
sigmas=sigmas,
mu=mu,
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -988,10 +988,14 @@ def __call__(
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.15),
)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timestep_device,
sigmas=sigmas,
mu=mu,
)
Expand Down
6 changes: 5 additions & 1 deletion src/diffusers/pipelines/flux/pipeline_flux_controlnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -1002,10 +1002,14 @@ def __call__(
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.15),
)
if XLA_AVAILABLE:
timestep_device = "cpu"
else:
timestep_device = device
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timestep_device,
sigmas=sigmas,
mu=mu,
)
Expand Down
Loading