Skip to content

[ControlNet] Adds controlnet for SanaTransformer #11040

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 24 commits into from
Apr 13, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 6 additions & 2 deletions docs/source/en/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -268,16 +268,18 @@
- sections:
- local: api/models/controlnet
title: ControlNetModel
- local: api/models/controlnet_union
title: ControlNetUnionModel
- local: api/models/controlnet_flux
title: FluxControlNetModel
- local: api/models/controlnet_hunyuandit
title: HunyuanDiT2DControlNetModel
- local: api/models/controlnet_sana
title: SanaControlNetModel
- local: api/models/controlnet_sd3
title: SD3ControlNetModel
- local: api/models/controlnet_sparsectrl
title: SparseControlNetModel
- local: api/models/controlnet_union
title: ControlNetUnionModel
title: ControlNets
- sections:
- local: api/models/allegro_transformer3d
Expand Down Expand Up @@ -420,6 +422,8 @@
title: ControlNet with Stable Diffusion 3
- local: api/pipelines/controlnet_sdxl
title: ControlNet with Stable Diffusion XL
- local: api/pipelines/controlnet_sana
title: ControlNet-Sana
- local: api/pipelines/controlnetxs
title: ControlNet-XS
- local: api/pipelines/controlnetxs_sdxl
Expand Down
29 changes: 29 additions & 0 deletions docs/source/en/api/models/controlnet_sana.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# SanaControlNetModel

The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.

The abstract from the paper is:

*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*

This model was contributed by [ishan24](https://huggingface.co/ishan24). ❤️
The original codebase can be found at [NVlabs/Sana](https://github.com/NVlabs/Sana), and you can find official ControlNet checkpoints on [Efficient-Large-Model's](https://huggingface.co/Efficient-Large-Model) Hub profile.

## SanaControlNetModel
[[autodoc]] SanaControlNetModel

## SanaControlNetOutput
[[autodoc]] models.controlnets.controlnet_sana.SanaControlNetOutput

36 changes: 36 additions & 0 deletions docs/source/en/api/pipelines/controlnet_sana.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# ControlNet

<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>

ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.

With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.

The abstract from the paper is:

*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*

This pipeline was contributed by [ishan24](https://huggingface.co/ishan24). ❤️
The original codebase can be found at [NVlabs/Sana](https://github.com/NVlabs/Sana), and you can find official ControlNet checkpoints on [Efficient-Large-Model's](https://huggingface.co/Efficient-Large-Model) Hub profile.

## SanaControlNetPipeline
[[autodoc]] SanaControlNetPipeline
- all
- __call__

## SanaPipelineOutput
[[autodoc]] pipelines.sana.pipeline_output.SanaPipelineOutput
216 changes: 216 additions & 0 deletions scripts/convert_sana_controlnet_to_diffusers.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,216 @@
#!/usr/bin/env python
from __future__ import annotations

import argparse
from contextlib import nullcontext

import torch
from accelerate import init_empty_weights

from diffusers import (
SanaControlNetModel,
)
from diffusers.models.modeling_utils import load_model_dict_into_meta
from diffusers.utils.import_utils import is_accelerate_available


CTX = init_empty_weights if is_accelerate_available else nullcontext


def main(args):
file_path = args.orig_ckpt_path

all_state_dict = torch.load(file_path, weights_only=True)
state_dict = all_state_dict.pop("state_dict")
converted_state_dict = {}

# Patch embeddings.
converted_state_dict["patch_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight")
converted_state_dict["patch_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias")

# Caption projection.
converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight")
converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias")
converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight")
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")

# AdaLN-single LN
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
"t_embedder.mlp.0.weight"
)
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
"t_embedder.mlp.2.weight"
)
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")

# Shared norm.
converted_state_dict["time_embed.linear.weight"] = state_dict.pop("t_block.1.weight")
converted_state_dict["time_embed.linear.bias"] = state_dict.pop("t_block.1.bias")

# y norm
converted_state_dict["caption_norm.weight"] = state_dict.pop("attention_y_norm.weight")

# Positional embedding interpolation scale.
interpolation_scale = {512: None, 1024: None, 2048: 1.0, 4096: 2.0}

# ControlNet Input Projection.
converted_state_dict["input_block.weight"] = state_dict.pop("controlnet.0.before_proj.weight")
converted_state_dict["input_block.bias"] = state_dict.pop("controlnet.0.before_proj.bias")

for depth in range(7):
# Transformer blocks.
converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop(
f"controlnet.{depth}.copied_block.scale_shift_table"
)

# Linear Attention is all you need 🤘
# Self attention.
q, k, v = torch.chunk(state_dict.pop(f"controlnet.{depth}.copied_block.attn.qkv.weight"), 3, dim=0)
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
# Projection.
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop(
f"controlnet.{depth}.copied_block.attn.proj.bias"
)

# Feed-forward.
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.inverted_conv.conv.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.bias"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.inverted_conv.conv.bias"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.depth_conv.conv.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.bias"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.depth_conv.conv.bias"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_point.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.point_conv.conv.weight"
)

# Cross-attention.
q = state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.q_linear.weight")
q_bias = state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.q_linear.bias")
k, v = torch.chunk(state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.kv_linear.weight"), 2, dim=0)
k_bias, v_bias = torch.chunk(
state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.kv_linear.bias"), 2, dim=0
)

converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias

converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.cross_attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop(
f"controlnet.{depth}.copied_block.cross_attn.proj.bias"
)

# ControlNet After Projection
converted_state_dict[f"controlnet_blocks.{depth}.weight"] = state_dict.pop(
f"controlnet.{depth}.after_proj.weight"
)
converted_state_dict[f"controlnet_blocks.{depth}.bias"] = state_dict.pop(f"controlnet.{depth}.after_proj.bias")

# ControlNet
with CTX():
controlnet = SanaControlNetModel(
num_attention_heads=model_kwargs[args.model_type]["num_attention_heads"],
attention_head_dim=model_kwargs[args.model_type]["attention_head_dim"],
num_layers=model_kwargs[args.model_type]["num_layers"],
num_cross_attention_heads=model_kwargs[args.model_type]["num_cross_attention_heads"],
cross_attention_head_dim=model_kwargs[args.model_type]["cross_attention_head_dim"],
cross_attention_dim=model_kwargs[args.model_type]["cross_attention_dim"],
caption_channels=2304,
sample_size=args.image_size // 32,
interpolation_scale=interpolation_scale[args.image_size],
)

if is_accelerate_available():
load_model_dict_into_meta(controlnet, converted_state_dict)
else:
controlnet.load_state_dict(converted_state_dict, strict=True, assign=True)

num_model_params = sum(p.numel() for p in controlnet.parameters())
print(f"Total number of controlnet parameters: {num_model_params}")

controlnet = controlnet.to(weight_dtype)
controlnet.load_state_dict(converted_state_dict, strict=True)

print(f"Saving Sana ControlNet in Diffusers format in {args.dump_path}.")
controlnet.save_pretrained(args.dump_path)


DTYPE_MAPPING = {
"fp32": torch.float32,
"fp16": torch.float16,
"bf16": torch.bfloat16,
}

VARIANT_MAPPING = {
"fp32": None,
"fp16": "fp16",
"bf16": "bf16",
}


if __name__ == "__main__":
parser = argparse.ArgumentParser()

parser.add_argument(
"--orig_ckpt_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--image_size",
default=1024,
type=int,
choices=[512, 1024, 2048, 4096],
required=False,
help="Image size of pretrained model, 512, 1024, 2048 or 4096.",
)
parser.add_argument(
"--model_type",
default="SanaMS_1600M_P1_ControlNet_D7",
type=str,
choices=["SanaMS_1600M_P1_ControlNet_D7", "SanaMS_600M_P1_ControlNet_D7"],
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
parser.add_argument("--dtype", default="fp16", type=str, choices=["fp32", "fp16", "bf16"], help="Weight dtype.")

args = parser.parse_args()

model_kwargs = {
"SanaMS_1600M_P1_ControlNet_D7": {
"num_attention_heads": 70,
"attention_head_dim": 32,
"num_cross_attention_heads": 20,
"cross_attention_head_dim": 112,
"cross_attention_dim": 2240,
"num_layers": 7,
},
"SanaMS_600M_P1_ControlNet_D7": {
"num_attention_heads": 36,
"attention_head_dim": 32,
"num_cross_attention_heads": 16,
"cross_attention_head_dim": 72,
"cross_attention_dim": 1152,
"num_layers": 7,
},
}

device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = DTYPE_MAPPING[args.dtype]
variant = VARIANT_MAPPING[args.dtype]

main(args)
4 changes: 4 additions & 0 deletions src/diffusers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -188,6 +188,7 @@
"OmniGenTransformer2DModel",
"PixArtTransformer2DModel",
"PriorTransformer",
"SanaControlNetModel",
"SanaTransformer2DModel",
"SD3ControlNetModel",
"SD3MultiControlNetModel",
Expand Down Expand Up @@ -426,6 +427,7 @@
"PixArtSigmaPAGPipeline",
"PixArtSigmaPipeline",
"ReduxImageEncoder",
"SanaControlNetPipeline",
"SanaPAGPipeline",
"SanaPipeline",
"SanaSprintPipeline",
Expand Down Expand Up @@ -766,6 +768,7 @@
OmniGenTransformer2DModel,
PixArtTransformer2DModel,
PriorTransformer,
SanaControlNetModel,
SanaTransformer2DModel,
SD3ControlNetModel,
SD3MultiControlNetModel,
Expand Down Expand Up @@ -983,6 +986,7 @@
PixArtSigmaPAGPipeline,
PixArtSigmaPipeline,
ReduxImageEncoder,
SanaControlNetPipeline,
SanaPAGPipeline,
SanaPipeline,
SanaSprintPipeline,
Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@
"HunyuanDiT2DControlNetModel",
"HunyuanDiT2DMultiControlNetModel",
]
_import_structure["controlnets.controlnet_sana"] = ["SanaControlNetModel"]
_import_structure["controlnets.controlnet_sd3"] = ["SD3ControlNetModel", "SD3MultiControlNetModel"]
_import_structure["controlnets.controlnet_sparsectrl"] = ["SparseControlNetModel"]
_import_structure["controlnets.controlnet_union"] = ["ControlNetUnionModel"]
Expand Down Expand Up @@ -133,6 +134,7 @@
HunyuanDiT2DMultiControlNetModel,
MultiControlNetModel,
MultiControlNetUnionModel,
SanaControlNetModel,
SD3ControlNetModel,
SD3MultiControlNetModel,
SparseControlNetModel,
Expand Down
1 change: 1 addition & 0 deletions src/diffusers/models/controlnets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
HunyuanDiT2DControlNetModel,
HunyuanDiT2DMultiControlNetModel,
)
from .controlnet_sana import SanaControlNetModel
from .controlnet_sd3 import SD3ControlNetModel, SD3ControlNetOutput, SD3MultiControlNetModel
from .controlnet_sparsectrl import (
SparseControlNetConditioningEmbedding,
Expand Down
Loading