|
10 | 10 | from ..modeling_utils import ModelMixin |
11 | 11 | from .attention import AttentionBlock |
12 | 12 | from .embeddings import get_timestep_embedding |
13 | | -from .resnet import Downsample, TimestepBlock, Upsample |
14 | | -from .resnet import ResnetBlock |
15 | | -#from .resnet import ResBlock |
| 13 | +from .resnet import Downsample, ResnetBlock, TimestepBlock, Upsample |
| 14 | + |
| 15 | + |
| 16 | +# from .resnet import ResBlock |
16 | 17 |
|
17 | 18 |
|
18 | 19 | def exists(val): |
@@ -561,14 +562,14 @@ def __init__( |
561 | 562 | for level, mult in enumerate(channel_mult): |
562 | 563 | for _ in range(num_res_blocks): |
563 | 564 | layers = [ |
564 | | - ResnetBlock( |
565 | | - in_channels=ch, |
566 | | - out_channels=mult * model_channels, |
567 | | - dropout=dropout, |
568 | | - temb_channels=time_embed_dim, |
569 | | - eps=1e-5, |
570 | | - non_linearity="silu", |
571 | | - overwrite_for_ldm=True, |
| 565 | + ResnetBlock( |
| 566 | + in_channels=ch, |
| 567 | + out_channels=mult * model_channels, |
| 568 | + dropout=dropout, |
| 569 | + temb_channels=time_embed_dim, |
| 570 | + eps=1e-5, |
| 571 | + non_linearity="silu", |
| 572 | + overwrite_for_ldm=True, |
572 | 573 | ) |
573 | 574 | ] |
574 | 575 | ch = mult * model_channels |
@@ -601,16 +602,16 @@ def __init__( |
601 | 602 | out_ch = ch |
602 | 603 | self.input_blocks.append( |
603 | 604 | TimestepEmbedSequential( |
604 | | -# ResBlock( |
605 | | -# ch, |
606 | | -# time_embed_dim, |
607 | | -# dropout, |
608 | | -# out_channels=out_ch, |
609 | | -# dims=dims, |
610 | | -# use_checkpoint=use_checkpoint, |
611 | | -# use_scale_shift_norm=use_scale_shift_norm, |
612 | | -# down=True, |
613 | | -# ) |
| 605 | + # ResBlock( |
| 606 | + # ch, |
| 607 | + # time_embed_dim, |
| 608 | + # dropout, |
| 609 | + # out_channels=out_ch, |
| 610 | + # dims=dims, |
| 611 | + # use_checkpoint=use_checkpoint, |
| 612 | + # use_scale_shift_norm=use_scale_shift_norm, |
| 613 | + # down=True, |
| 614 | + # ) |
614 | 615 | None |
615 | 616 | if resblock_updown |
616 | 617 | else Downsample( |
@@ -703,16 +704,16 @@ def __init__( |
703 | 704 | if level and i == num_res_blocks: |
704 | 705 | out_ch = ch |
705 | 706 | layers.append( |
706 | | -# ResBlock( |
707 | | -# ch, |
708 | | -# time_embed_dim, |
709 | | -# dropout, |
710 | | -# out_channels=out_ch, |
711 | | -# dims=dims, |
712 | | -# use_checkpoint=use_checkpoint, |
713 | | -# use_scale_shift_norm=use_scale_shift_norm, |
714 | | -# up=True, |
715 | | -# ) |
| 707 | + # ResBlock( |
| 708 | + # ch, |
| 709 | + # time_embed_dim, |
| 710 | + # dropout, |
| 711 | + # out_channels=out_ch, |
| 712 | + # dims=dims, |
| 713 | + # use_checkpoint=use_checkpoint, |
| 714 | + # use_scale_shift_norm=use_scale_shift_norm, |
| 715 | + # up=True, |
| 716 | + # ) |
716 | 717 | None |
717 | 718 | if resblock_updown |
718 | 719 | else Upsample(ch, use_conv=conv_resample, dims=dims, out_channels=out_ch) |
@@ -876,16 +877,16 @@ def __init__( |
876 | 877 | out_ch = ch |
877 | 878 | self.input_blocks.append( |
878 | 879 | TimestepEmbedSequential( |
879 | | -# ResBlock( |
880 | | -# ch, |
881 | | -# time_embed_dim, |
882 | | -# dropout, |
883 | | -# out_channels=out_ch, |
884 | | -# dims=dims, |
885 | | -# use_checkpoint=use_checkpoint, |
886 | | -# use_scale_shift_norm=use_scale_shift_norm, |
887 | | -# down=True, |
888 | | -# ) |
| 880 | + # ResBlock( |
| 881 | + # ch, |
| 882 | + # time_embed_dim, |
| 883 | + # dropout, |
| 884 | + # out_channels=out_ch, |
| 885 | + # dims=dims, |
| 886 | + # use_checkpoint=use_checkpoint, |
| 887 | + # use_scale_shift_norm=use_scale_shift_norm, |
| 888 | + # down=True, |
| 889 | + # ) |
889 | 890 | None |
890 | 891 | if resblock_updown |
891 | 892 | else Downsample( |
|
0 commit comments