-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy patheval_depth.py
256 lines (215 loc) · 10.8 KB
/
eval_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import time, argparse, os.path as osp, os, sys
import torch, numpy as np
import torch.distributed as dist
import mmcv
from mmengine import Config
from mmengine.runner import set_random_seed
from mmengine.logging import MMLogger
from mmseg.models import build_segmentor
import warnings
warnings.filterwarnings("ignore")
from utils.feat_tools import multi2single_scale
from copy import deepcopy
from utils.config_tools import modify_for_eval
def pass_print(*args, **kwargs):
pass
def main(local_rank, args):
# global settings
set_random_seed(args.seed)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
# load config
cfg = Config.fromfile(args.py_config)
cfg = modify_for_eval(cfg, args.dataset)
cfg.work_dir = args.work_dir
# init DDP
if args.gpus > 1:
distributed = True
ip = os.environ.get("MASTER_ADDR", "127.0.0.1")
port = os.environ.get("MASTER_PORT", "20506")
hosts = int(os.environ.get("WORLD_SIZE", 1)) # number of nodes
rank = int(os.environ.get("RANK", 0)) # node id
gpus = torch.cuda.device_count() # gpus per node
print(f"tcp://{ip}:{port}")
dist.init_process_group(
backend="nccl", init_method=f"tcp://{ip}:{port}",
world_size=hosts * gpus, rank=rank * gpus + local_rank)
world_size = dist.get_world_size()
cfg.gpu_ids = range(world_size)
torch.cuda.set_device(local_rank)
if local_rank != 0:
import builtins
builtins.print = pass_print
else:
distributed = False
if local_rank == 0:
os.makedirs(args.work_dir, exist_ok=True)
cfg.dump(osp.join(args.work_dir, 'eval_depth_' + osp.basename(args.py_config)))
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(args.work_dir, f'eval_depth_{timestamp}.log')
logger = MMLogger('selfocc', log_file=log_file)
MMLogger._instance_dict['selfocc'] = logger
logger.info(args)
logger.info(f'Config:\n{cfg.pretty_text}')
import model
from dataset import get_dataloader
# build model
cfg.model.head.return_max_depth = True
my_model = build_segmentor(cfg.model)
my_model.init_weights()
n_parameters = sum(p.numel() for p in my_model.parameters() if p.requires_grad)
logger.info(f'Number of params: {n_parameters}')
if distributed:
if cfg.get('syncBN', True):
my_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(my_model)
logger.info('converted sync bn.')
find_unused_parameters = cfg.get('find_unused_parameters', False)
ddp_model_module = torch.nn.parallel.DistributedDataParallel
my_model = ddp_model_module(
my_model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
raw_model = my_model.module
else:
my_model = my_model.cuda()
raw_model = my_model
logger.info('done ddp model')
train_dataset_loader, val_dataset_loader = get_dataloader(
cfg.train_dataset_config,
cfg.val_dataset_config,
cfg.train_wrapper_config,
cfg.val_wrapper_config,
cfg.train_loader,
cfg.val_loader,
cfg.nusc,
dist=distributed,)
# get optimizer, loss, scheduler
amp = cfg.get('amp', False)
# resume and load
cfg.resume_from = ''
if osp.exists(osp.join(args.work_dir, 'latest.pth')):
cfg.resume_from = osp.join(args.work_dir, 'latest.pth')
if args.resume_from:
cfg.resume_from = args.resume_from
logger.info('resume from: ' + cfg.resume_from)
logger.info('work dir: ' + args.work_dir)
if cfg.resume_from and osp.exists(cfg.resume_from):
map_location = 'cpu'
ckpt = torch.load(cfg.resume_from, map_location=map_location)
print(raw_model.load_state_dict(ckpt['state_dict'], strict=False))
logger.info(f'successfully resumed from epoch {ckpt["epoch"]}')
elif cfg.load_from:
ckpt = torch.load(cfg.load_from, map_location='cpu')
if 'state_dict' in ckpt:
state_dict = ckpt['state_dict']
else:
state_dict = ckpt
print(raw_model.load_state_dict(state_dict, strict=False))
# eval
print_freq = cfg.print_freq
my_model.eval()
if args.depth_metric:
from utils.metric_util import DepthMetric
if args.dataset == 'kitti' or args.dataset == 'kitti_raw':
camera_names = ['front']
elif args.dataset == 'nuscenes':
camera_names = ['front', 'front_right', 'front_left', \
'back', 'back_left', 'back_right']
depth_metric = DepthMetric(
camera_names=camera_names).cuda()
depth_metric._reset()
if args.save_depth:
depth_save_path = os.path.join(args.work_dir, "depth")
depth_median_save_path = os.path.join(args.work_dir, "depth_median")
depth_max_save_path = os.path.join(args.work_dir, "depth_max")
os.makedirs(depth_save_path, exist_ok=True)
os.makedirs(depth_median_save_path, exist_ok=True)
os.makedirs(depth_max_save_path, exist_ok=True)
with torch.no_grad():
for i_iter_val, (input_imgs, curr_imgs, prev_imgs, next_imgs, color_imgs, \
img_metas, curr_aug, prev_aug, next_aug) in enumerate(val_dataset_loader):
input_imgs = input_imgs.cuda()
with torch.cuda.amp.autocast(amp):
if cfg.get('estimate_pose'):
assert curr_aug is not None and prev_aug is not None and next_aug is not None
assert img_metas[0]['input_imgs_path'] == img_metas[0]['curr_imgs_path']
curr_aug, prev_aug, next_aug = curr_aug.cuda(), prev_aug.cuda(), next_aug.cuda()
pose_dict = my_model(pose_input=[curr_aug, prev_aug, next_aug], metas=img_metas, predict_pose=True)
for i_meta, meta in enumerate(img_metas):
meta.update(pose_dict[i_meta])
my_model(imgs=input_imgs, metas=img_metas, prepare=True)
result_dict = my_model.module.head.render(metas=img_metas, batch=args.batch)
if args.flip:
input_imgs = torch.flip(input_imgs, dims=[-1])
for meta in img_metas:
meta['flip'] = True
my_model(imgs=input_imgs, metas=img_metas, prepare=True)
result_dict_flip = my_model.module.head.render(metas=img_metas, batch=args.batch)
ms_depths_flip = result_dict_flip['ms_depths'][0]
result_dict['ms_depths'][0] = (result_dict['ms_depths'][0] + ms_depths_flip) / 2
if 'ms_depths_median' in result_dict_flip:
ms_depths_median_flip = result_dict_flip['ms_depths_median'][0]
result_dict['ms_depths_median'][0] = (result_dict['ms_depths_median'][0] + ms_depths_median_flip) / 2
ms_depths_max_flip = result_dict_flip['ms_max_depths'][0]
result_dict['ms_max_depths'][0] = (result_dict['ms_max_depths'][0] + ms_depths_max_flip) / 2
#### calculate all sorts of depths
ms_depths = result_dict['ms_depths'][0]
ms_depths = ms_depths.unflatten(-1, cfg.num_rays)
if 'ms_depths_median' in result_dict:
ms_depths_median = result_dict['ms_depths_median'][0]
ms_depths_median = ms_depths_median.unflatten(-1, cfg.num_rays)
if 'ms_max_depths' in result_dict:
ms_depths_max = result_dict['ms_max_depths'][0]
ms_depths_max = ms_depths_max.unflatten(-1, cfg.num_rays)
if args.save_depth:
# ms_depths: B, N, R
for i, (ms_depth, img_meta) in enumerate(zip(ms_depths, img_metas)):
token = img_meta['token']
np.save(os.path.join(depth_save_path, token + '.npy'), ms_depth.cpu().numpy())
if 'ms_depths_median' in result_dict:
for i, (ms_depth, img_meta) in enumerate(zip(ms_depths_median, img_metas)):
token = img_meta['token']
np.save(os.path.join(depth_median_save_path, token + '.npy'), ms_depth.cpu().numpy())
for i, (ms_depth, img_meta) in enumerate(zip(ms_depths_max, img_metas)):
token = img_meta['token']
np.save(os.path.join(depth_max_save_path, token + '.npy'), ms_depth.cpu().numpy())
if args.depth_metric:
depth_loc = ms_depths.new_tensor(img_metas[0]['depth_loc'])
depth_gt = ms_depths.new_tensor(img_metas[0]['depth_gt'])
depth_mask = torch.from_numpy(img_metas[0]['depth_mask']).cuda()
if args.depth_metric_tgt == 'raw':
depth_pred = ms_depths[0]
elif args.depth_metric_tgt == 'median':
depth_pred = ms_depths_median[0]
elif args.depth_metric_tgt == 'max':
depth_pred = ms_depths_max[0]
depth_metric._after_step(depth_loc, depth_gt, depth_mask, depth_pred)
if i_iter_val % print_freq == 0 and local_rank == 0:
logger.info('[EVAL] Iter %5d'%(i_iter_val))
if args.depth_metric:
depth_metric._after_epoch()
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='')
parser.add_argument('--py-config', default='config/tpv_lidarseg.py')
parser.add_argument('--work-dir', type=str, default='./out/tpv_lidarseg')
parser.add_argument('--resume-from', type=str, default='')
parser.add_argument('--hfai', action='store_true', default=False)
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--save-depth', action='store_true', default=False)
parser.add_argument('--depth-metric', action='store_true', default=False)
parser.add_argument('--depth-metric-tgt', type=str, default='raw')
parser.add_argument('--dataset', type=str, default='nuscenes')
parser.add_argument('--batch', type=int, default=0)
parser.add_argument('--flip', action='store_true', default=False)
args = parser.parse_args()
ngpus = torch.cuda.device_count()
args.gpus = ngpus
print(args)
if args.hfai:
os.environ['HFAI'] = 'true'
if ngpus > 1:
torch.multiprocessing.spawn(main, args=(args,), nprocs=args.gpus)
else:
main(0, args)