This repository has been archived by the owner on Dec 5, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathcgocall.go
87 lines (83 loc) · 4.3 KB
/
cgocall.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Cgo call and callback support.
//
// To call into the C function f from Go, the cgo-generated code calls
// runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a
// gcc-compiled function written by cgo.
//
// runtime.cgocall (below) locks g to m, calls entersyscall
// so as not to block other goroutines or the garbage collector,
// and then calls runtime.asmcgocall(_cgo_Cfunc_f, frame).
//
// runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack
// (assumed to be an operating system-allocated stack, so safe to run
// gcc-compiled code on) and calls _cgo_Cfunc_f(frame).
//
// _cgo_Cfunc_f invokes the actual C function f with arguments
// taken from the frame structure, records the results in the frame,
// and returns to runtime.asmcgocall.
//
// After it regains control, runtime.asmcgocall switches back to the
// original g (m->curg)'s stack and returns to runtime.cgocall.
//
// After it regains control, runtime.cgocall calls exitsyscall, which blocks
// until this m can run Go code without violating the $GOMAXPROCS limit,
// and then unlocks g from m.
//
// The above description skipped over the possibility of the gcc-compiled
// function f calling back into Go. If that happens, we continue down
// the rabbit hole during the execution of f.
//
// To make it possible for gcc-compiled C code to call a Go function p.GoF,
// cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't
// know about packages). The gcc-compiled C function f calls GoF.
//
// GoF calls crosscall2(_cgoexp_GoF, frame, framesize). Crosscall2
// (in cgo/gcc_$GOARCH.S, a gcc-compiled assembly file) is a two-argument
// adapter from the gcc function call ABI to the 6c function call ABI.
// It is called from gcc to call 6c functions. In this case it calls
// _cgoexp_GoF(frame, framesize), still running on m->g0's stack
// and outside the $GOMAXPROCS limit. Thus, this code cannot yet
// call arbitrary Go code directly and must be careful not to allocate
// memory or use up m->g0's stack.
//
// _cgoexp_GoF calls runtime.cgocallback(p.GoF, frame, framesize, ctxt).
// (The reason for having _cgoexp_GoF instead of writing a crosscall3
// to make this call directly is that _cgoexp_GoF, because it is compiled
// with 6c instead of gcc, can refer to dotted names like
// runtime.cgocallback and p.GoF.)
//
// runtime.cgocallback (in asm_$GOARCH.s) switches from m->g0's
// stack to the original g (m->curg)'s stack, on which it calls
// runtime.cgocallbackg(p.GoF, frame, framesize).
// As part of the stack switch, runtime.cgocallback saves the current
// SP as m->g0->sched.sp, so that any use of m->g0's stack during the
// execution of the callback will be done below the existing stack frames.
// Before overwriting m->g0->sched.sp, it pushes the old value on the
// m->g0 stack, so that it can be restored later.
//
// runtime.cgocallbackg (below) is now running on a real goroutine
// stack (not an m->g0 stack). First it calls runtime.exitsyscall, which will
// block until the $GOMAXPROCS limit allows running this goroutine.
// Once exitsyscall has returned, it is safe to do things like call the memory
// allocator or invoke the Go callback function p.GoF. runtime.cgocallbackg
// first defers a function to unwind m->g0.sched.sp, so that if p.GoF
// panics, m->g0.sched.sp will be restored to its old value: the m->g0 stack
// and the m->curg stack will be unwound in lock step.
// Then it calls p.GoF. Finally it pops but does not execute the deferred
// function, calls runtime.entersyscall, and returns to runtime.cgocallback.
//
// After it regains control, runtime.cgocallback switches back to
// m->g0's stack (the pointer is still in m->g0.sched.sp), restores the old
// m->g0.sched.sp value from the stack, and returns to _cgoexp_GoF.
//
// _cgoexp_GoF immediately returns to crosscall2, which restores the
// callee-save registers for gcc and returns to GoF, which returns to f.
package runtime
// Addresses collected in a cgo backtrace when crashing.
// Length must match arg.Max in x_cgo_callers in runtime/cgo/gcc_traceback.c.
type cgoCallers [32]uintptr
const cgoCheckPointerFail = "cgo argument has Go pointer to Go pointer"
const cgoResultFail = "cgo result has Go pointer"