-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrainer_TPU.py
177 lines (158 loc) · 6.91 KB
/
Trainer_TPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import math
import yaml
from tqdm import tqdm, trange
import matplotlib.pyplot as plt
from transformers import AdamW, AutoModel, AutoTokenizer
import torch
import torch.nn as nn
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.distributed.xla_multiprocessing as xmp
import torch_xla.distributed.parallel_loader as pl
from models import *
from dataset import *
from model_utils import *
def fit(model, num_epochs,\
optimizer,\
train_dataloader, valid_dataloader,\
model_save_path,\
train_loss_set=[], valid_loss_set = [],\
lowest_eval_loss=None, start_epoch=0,\
device="cuda"
):
model.to(device)
# trange is a tqdm wrapper around the normal python range
for i in trange(num_epochs, desc="Epoch"):
# if continue training from saved model
actual_epoch = start_epoch + i
"""
Training
"""
# Set our model to training mode (as opposed to evaluation mode)
model.train()
# Tracking variables
tr_loss = 0
as_loss= 0
se_loss=0
num_train_samples = 0
train_dataloader = pl.ParallelLoader(train_dataloader, [cfg['device']]).per_device_loader(cfg['device'])
# Train the data for one epoch
for step, batch in enumerate(train_dataloader):
# Add batch to GPU
batch = tuple(t.to(device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# Clear out the gradients (by default they accumulate)
optimizer.zero_grad()
# Forward pass
output = model(b_input_ids, attention_mask=b_input_mask, labels=b_labels)
# store train loss
tr_loss += output['loss'].item()
as_loss += output['aspect_loss'].item()
se_loss += output['sent_loss'].item()
num_train_samples += b_labels.size(0)
# Backward pass
#output['aspect_loss'].backward(retain_graph=True)
#output['sent_loss'].backward()
output['loss'].backward()
#for name, param in model.sentiment_fcs.named_parameters():
#if param.requires_grad:
#print(param.register_hook(hook_fn))
#clipping_value = 1 # arbitrary value of your choosing
#torch.nn.utils.clip_grad_norm(model.parameters(), clipping_value)
# Update parameters and take a step using the computed gradient
optimizer.step()
# scheduler.step()
# Update tracking variables
epoch_train_loss = tr_loss/num_train_samples
epoch_aspect_loss = as_loss/num_train_samples
epoch_sentiment_loss = se_loss/num_train_samples
train_loss_set.append([epoch_train_loss, epoch_aspect_loss, epoch_sentiment_loss])
print("Train loss: total - {}, classifier - {}, sentiment - {}".format(epoch_train_loss, epoch_aspect_loss, epoch_sentiment_loss))
"""
Validation
"""
# Put model in evaluation mode to evaluate loss on the validation set
model.eval()
# Tracking variables
eval_loss = 0
as_loss = 0
se_loss = 0
num_eval_samples = 0
valid_dataloader = pl.ParallelLoader(valid_dataloader, [cfg['device']]).per_device_loader(cfg['device'])
# Evaluate data for one epoch
for batch in valid_dataloader:
# Add batch to GPU
batch = tuple(t.to(device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# Telling the model not to compute or store gradients,
# saving memory and speeding up validation
with torch.no_grad():
# Forward pass, calculate validation loss
output = model(b_input_ids, attention_mask=b_input_mask, labels=b_labels)
# store valid loss
eval_loss += output['loss'].item()
as_loss += output['aspect_loss'].item()
se_loss += output['sent_loss'].item()
num_eval_samples += b_labels.size(0)
# Update tracking variables
epoch_eval_loss = eval_loss/num_eval_samples
epoch_aspect_loss = as_loss/num_eval_samples
epoch_sentiment_loss = se_loss/num_eval_samples
valid_loss_set.append([epoch_eval_loss,epoch_aspect_loss, epoch_sentiment_loss])
print("Validation loss: total - {}, classifier - {}, sentiment - {}".format(epoch_eval_loss, epoch_aspect_loss, epoch_sentiment_loss))
if lowest_eval_loss == None:
lowest_eval_loss = epoch_eval_loss
# save model
save_model(model, model_save_path, actual_epoch,\
lowest_eval_loss, train_loss_set, valid_loss_set)
else:
if epoch_eval_loss < lowest_eval_loss:
lowest_eval_loss = epoch_eval_loss
# save model
save_model(model, model_save_path, actual_epoch,\
lowest_eval_loss, train_loss_set, valid_loss_set)
print("\n")
return model, train_loss_set, valid_loss_set
def train_fn(device, cfg):
tokenizer = AutoTokenizer.from_pretrained(cfg['pretrained'])
train = load_dataset_by_filepath(cfg, cfg['train_file'], tokenizer=tokenizer)
val = load_dataset_by_filepath(cfg, cfg['val_file'], tokenizer=tokenizer)
train_dataloader = create_dataloader_tpu(cfg, train)
val_dataloader = create_dataloader_tpu(cfg, val)
model = AsMil(cfg)
model.embedder.freeze_PhoBert_decoder()
try:
model, start_epochs, lowest_eval_loss, train_loss_hist, valid_loss_hist = load_model(model, cfg['saved_model'])
print(start_epochs, lowest_eval_loss)
except:
start_epochs = 0
lowest_eval_loss = None
train_loss_hist = []
valid_loss_hist = []
model= model.to(cfg['device'])
optimizer = AdamW([{'params': model.category_fcs.parameters()},
{'params': model.sentiment_fcs.parameters(), 'lr': cfg['lr_sentiment']}
], lr=cfg['lr'], weight_decay=cfg['weight_decay'], correct_bias=False)
model, train_loss_set, valid_loss_set = fit(model=model,
num_epochs=cfg['num_epochs'],
optimizer=optimizer,
train_dataloader=train_dataloader,
valid_dataloader=val_dataloader,
model_save_path=cfg['model_save_path'],
train_loss_set=train_loss_hist, valid_loss_set=valid_loss_hist,
lowest_eval_loss=lowest_eval_loss,
start_epoch=start_epochs,
device=device)
return model, train_loss_set, valid_loss_set
def _mp_fn(rank, flags):
device = xm.xla_device()
model, train_loss_set, valid_loss_set = train_fn(device, flags)
if __name__ == "__main__":
with open('config/absa_model.yaml') as f:
cfg = yaml.load(f, Loader=yaml.SafeLoader)
cfg['device'] = xm.xla_device()
print(f"### Loading config {cfg}")
xmp.spawn(_mp_fn, args=(cfg,), nprocs=xm.xrt_world_size(), start_method='fork')