Skip to content

Latest commit

 

History

History
262 lines (144 loc) · 8.93 KB

README.md

File metadata and controls

262 lines (144 loc) · 8.93 KB

MNIST-Deep-Learning

Numpy Only, without Tensorflow, Keras.... 3rd API

Deep Learning codes for MNIST with detailed explanation


Copyright: (C) Daniel Lu, RasVector Technology.

Email : dan59314@gmail.com

linkedin : https://www.linkedin.com/in/daniel-lu-238910a4/

Web : http://www.rasvector.url.tw/

YouTube : http://www.youtube.com/dan59314/playlist

Instructables : https://goo.gl/EwRGYA  

GooglePlay : https://play.google.com/store/apps/developer?id=%EF%BC%A4aniel+Lu+%E5%91%82%E8%8A%B3%E5%85%83    

This software may be freely copied, modified, and redistributed provided that this copyright notice is preserved on all copies. The intellectual property rights of the algorithms used reside with the Daniel Lu, RasVector Technology.

You may not distribute this software, in whole or in part, as part of any commercial product without the express consent of the author.

There is no warranty or other guarantee of fitness of this software for any purpose. It is provided solely "as is".


版權宣告 (C) Daniel Lu, RasVector Technology.

Email : dan59314@gmail.com

linkedin : https://www.linkedin.com/in/daniel-lu-238910a4/

Web : http://www.rasvector.url.tw/

YouTube : http://www.youtube.com/dan59314/playlist

Instructables : https://goo.gl/EwRGYA

GooglePlay : https://play.google.com/store/apps/developer?id=%EF%BC%A4aniel+Lu+%E5%91%82%E8%8A%B3%E5%85%83

使用或修改軟體,請註明引用出處資訊如上。未經過作者明示同意,禁止使用在商業用途。


Example :

Train_NoConvLyr.py

Create and train a model for MNIST, then save the mode as a network file.

Train_ConvLyr.py

Same as above, but allow you to add a covolution layer    

Load_And_Train.py

Load an saved network file(model) and keep training without restart all.

Predict_Digits.py

Load traing data from MNIST data set, and randomlly predicit numbers insided.

Predict_Digits_RealTime.py

Capture image from camera, recognize digit(s) in realtime.    

Recognizing One Digit Video

Recognizing One Digit

Recognizing Multiple Digits Video

Recognizing Multiple Digits

Train_Encoder_Decoder.py

 Build Encoder, Decoder

Test_EnDeCoder.py

 Encode MNIST digits to code, and decode it back to digits      

AutoEncoder Digits Video

AutoEncoder Digits

AutoEncoder Denoise Video

AutoEncoder Denoise

AutoEncoder Sharpen Video

AutoEncoder Sharpen

MNIST GAN Video0

MNIST GAN Video1

MNIST GAN


What else you can do?

  1. Train your own hand-writing digits model.
  2. Train with input of other image set, like alphabet, patterns, signs.... etc
  3. Tell me if you feel these codes useful.

Hints :

Methods in RvNeuralNetwork class:

	Set_DropOutMethod()
	Show_LayersInfo()
	Train()
	Evaluate_Accuracy()
	Predict_Digit()
	...

Ways to create network:

  Create non-convolutionLayer network [ 780, 50, 10] :    
		net = rn.RvNeuralNetwork([784,50,10])      
  
	create convolutionLayer network [ 780, cnvLyr, 50, 10] :
		lyrObjs.append( RvConvolutionLayer(
   	 	inputShape, # eg. [pxlW, pxlH, Channel]
  	  filterShape, # eg. [pxlW, pxlH, Channel, FilterNum], 
 	   	filterStride) )         
    
   	lyrObjs.append( rn.RvNeuralLayer([lyrObjs[-1].Get_NeuronNum), 50))
   
   	lyrObjs.append( rn.RvNeuralLayer( [50, 10])
   
  	net = rn.RvNeuralNetwork(lyrObjs)
  
  	net.Train(....)

Build Encoder, Decoder:

  #### Train_Encoder_Decoder.py   # Build Encoder, Decoder
  
  encoder, decoder = net.Build_Encoder_Decoder(lstTrain, loop, stepNum, learnRate, lmbda, True, digitIdOnly)
    
  #### Test_EnDeCoder.py   # Encode MNIST digits to code, and decode it back to digits      
  
  decoder = rn.RvNeuralEnDeCoder.Create_Network(fn1)  # Create Decoder
  
  encoder = rn.RvNeuralEnDeCoder.Create_Network(fn2)  # Create Encoder 
  
  code = encoder.Get_OutputValues(input)  # Encode input to code
  
  output = decoder.Get_OutputValues(code)  # Decode code to digit  

Build Sharpen Model:

  #### Train_SharpenModel.py  # Build Sharpen Model
    
    .... encoder, decoder = endecoder.Build_Encoder_Decoder_AssignOutputY( \
        lstNew, loop, stepNum, learnRate, lmbda, initialWeights, digitIdOnly)
  
  #### Test_SharpenModel.py  # Test Denoise and sharpen 

    .....  rf.Test_EnDecoder(sharpenModel, lstTest, sampleNum, imgPath, noiseStrength)

Train GAN Model:

  #### Train_GanModel.py  # Load Genererator, Discriminator, Encoder from file or build new ones
  
    ...    
    if LoadAndTrain:    
        generator, discriminator, encoder = Get_Models_FromFile(intialDiscriminator)
    else:
        generator, discriminator, encoder = Get_Models_New(lstTrain,intialDiscriminator)
    ...

Test result

Neural Network -> Accuracy

[784, 30, 10] -> 0.95

[784, 60, 10] -> 0.96

[784, 100, 10] -> 0.976

[784, 400, 10] -> 0.9779

3 Hidden Layers

[784, 50, 50, 50, 10] -> 0.9735

Convolution Layer -> Accuracy

[784, ConvLyr, 50, 10] -> 0.9801 ... tested 20 epochs

Encoder / Decoder -> Accuracy

[784, 256, 128, 10, 128, 256, 784 ] -> 0.9312 ... tested 10 epochs

[784, 400, 20, 400, 784] -> 0.9526 ... tested 5 epochs


AutoEncoder


Misc. Projects of 3D, Multimedia, Arduino Iot, CAD/CAM, Free Tools

GitHub: https://github.com/dan59314

Email : dan59314@gmail.com

linkedin : https://www.linkedin.com/in/daniel-lu-238910a4/

Web : http://www.rasvector.url.tw/

YouTube : http://www.youtube.com/dan59314/playlist

Free Tools : http://www.rasvector.url.tw/hot_91270.html

Instructables : https://www.instructables.com/member/Daniel%20Lu/instructables/ Instructables