forked from opencobra/cobratoolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfindNeighborRxns.m
61 lines (52 loc) · 1.83 KB
/
findNeighborRxns.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
function [neighborRxns,neighborGenes,mets] = findNeighborRxns(model,rxn)
%findNeighborRxns Identifies the reactions and the corresponding genes
%that are adjacent (having a common metabolite) to a reaction of interest.
%Useful for characterizing the network around an orphan reaction.
%
% [neighborRxns,neighborGenes,mets] = findNeighborRxns(model,rxn)
%
%INPUTS
% model COBRA model structure
% rxn the target reaction (only 1 for now)
%
%OUTPUTS
% neighborRxns the neighboring rxns in the network, (having common
% metabolites)
% neighborGenes the genes associated with the neighbor rxns
% mets the metabolites in the target reaction
%
% Jeff Orth
% 10/11/09
%get the metabolites in the rxn
metIndex = find(model.S(:,findRxnIDs(model,rxn)));
% exclude common mets (atp, adp, h, h2o, pi) ** make this an input option
iAtpC = findMetIDs(model,'atp[c]');
iAtpP = findMetIDs(model,'atp[p]');
iAdpC = findMetIDs(model,'adp[c]');
iAdpP = findMetIDs(model,'adp[p]');
iHC = findMetIDs(model,'h[c]');
iHP = findMetIDs(model,'h[p]');
iH2oC = findMetIDs(model,'h2o[c]');
iH2oP = findMetIDs(model,'h2o[p]');
iPiC = findMetIDs(model,'pi[c]');
iPiP = findMetIDs(model,'pi[p]');
metIndex = setdiff(metIndex,[iAtpC,iAtpP,iAdpC,iAdpP,iHC,iHP,iH2oC,iH2oP,iPiC,iPiP]);
%get the rxns for each met
nRxnIndexs = {};
for i = 1:length(metIndex)
nRxnIndexs{i} = find(model.S(metIndex(i),:));
end
% remove target rxn from list
for i = 1:length(metIndex);
nRxnIndexs{i} = setdiff(nRxnIndexs{i},findRxnIDs(model,rxn));
end
neighborRxns = {};
for i = 1:length(metIndex)
neighborRxns{i} = model.rxns(nRxnIndexs{i});
end
%get genes for each rxn
neighborGenes = {};
for i = 1:length(metIndex)
neighborGenes{i} = model.grRules(nRxnIndexs{i});
end
mets = model.mets(metIndex);