|
| 1 | +from collections import namedtuple |
| 2 | + |
| 3 | +import torch |
| 4 | +import torchvision |
| 5 | +import torchvision.models as tm |
| 6 | +from packaging import version |
| 7 | + |
| 8 | +from ..registry import ModelAttribute, model_zoo |
| 9 | + |
| 10 | +data_gen_fn = lambda: dict(x=torch.rand(4, 3, 224, 224)) |
| 11 | +output_transform_fn = lambda x: dict(output=x) |
| 12 | + |
| 13 | +# special data gen fn |
| 14 | +inception_v3_data_gen_fn = lambda: dict(x=torch.rand(4, 3, 299, 299)) |
| 15 | + |
| 16 | + |
| 17 | +# special model fn |
| 18 | +def swin_s(): |
| 19 | + from torchvision.models.swin_transformer import Swin_T_Weights, _swin_transformer |
| 20 | + |
| 21 | + # adapted from torchvision.models.swin_transformer.swin_small |
| 22 | + weights = None |
| 23 | + weights = Swin_T_Weights.verify(weights) |
| 24 | + progress = True |
| 25 | + |
| 26 | + return _swin_transformer( |
| 27 | + patch_size=[4, 4], |
| 28 | + embed_dim=96, |
| 29 | + depths=[2, 2, 6, 2], |
| 30 | + num_heads=[3, 6, 12, 24], |
| 31 | + window_size=[7, 7], |
| 32 | + stochastic_depth_prob=0, # it is originally 0.2, but we set it to 0 to make it deterministic |
| 33 | + weights=weights, |
| 34 | + progress=progress, |
| 35 | + ) |
| 36 | + |
| 37 | + |
| 38 | +# special output transform fn |
| 39 | +google_net_output_transform_fn = lambda x: dict(output=x.logits) if isinstance(x, torchvision.models.GoogLeNetOutputs |
| 40 | + ) else dict(output=x) |
| 41 | +swin_s_output_output_transform_fn = lambda x: {f'output{idx}': val |
| 42 | + for idx, val in enumerate(x)} if isinstance(x, tuple) else dict(output=x) |
| 43 | +inception_v3_output_transform_fn = lambda x: dict(output=x.logits) if isinstance(x, torchvision.models.InceptionOutputs |
| 44 | + ) else dict(output=x) |
| 45 | + |
| 46 | +model_zoo.register(name='torchvision_alexnet', |
| 47 | + model_fn=tm.alexnet, |
| 48 | + data_gen_fn=data_gen_fn, |
| 49 | + output_transform_fn=output_transform_fn) |
| 50 | +model_zoo.register(name='torchvision_densenet121', |
| 51 | + model_fn=tm.densenet121, |
| 52 | + data_gen_fn=data_gen_fn, |
| 53 | + output_transform_fn=output_transform_fn) |
| 54 | +model_zoo.register(name='torchvision_efficientnet_b0', |
| 55 | + model_fn=tm.efficientnet_b0, |
| 56 | + data_gen_fn=data_gen_fn, |
| 57 | + output_transform_fn=output_transform_fn, |
| 58 | + model_attribute=ModelAttribute(has_stochastic_depth_prob=True)) |
| 59 | +model_zoo.register(name='torchvision_googlenet', |
| 60 | + model_fn=tm.googlenet, |
| 61 | + data_gen_fn=data_gen_fn, |
| 62 | + output_transform_fn=google_net_output_transform_fn) |
| 63 | +model_zoo.register(name='torchvision_inception_v3', |
| 64 | + model_fn=tm.inception_v3, |
| 65 | + data_gen_fn=inception_v3_data_gen_fn, |
| 66 | + output_transform_fn=inception_v3_output_transform_fn) |
| 67 | +model_zoo.register(name='torchvision_mobilenet_v2', |
| 68 | + model_fn=tm.mobilenet_v2, |
| 69 | + data_gen_fn=data_gen_fn, |
| 70 | + output_transform_fn=output_transform_fn) |
| 71 | +model_zoo.register(name='torchvision_mobilenet_v3_small', |
| 72 | + model_fn=tm.mobilenet_v3_small, |
| 73 | + data_gen_fn=data_gen_fn, |
| 74 | + output_transform_fn=output_transform_fn) |
| 75 | +model_zoo.register(name='torchvision_mnasnet0_5', |
| 76 | + model_fn=tm.mnasnet0_5, |
| 77 | + data_gen_fn=data_gen_fn, |
| 78 | + output_transform_fn=output_transform_fn) |
| 79 | +model_zoo.register(name='torchvision_resnet18', |
| 80 | + model_fn=tm.resnet18, |
| 81 | + data_gen_fn=data_gen_fn, |
| 82 | + output_transform_fn=output_transform_fn) |
| 83 | +model_zoo.register(name='torchvision_regnet_x_16gf', |
| 84 | + model_fn=tm.regnet_x_16gf, |
| 85 | + data_gen_fn=data_gen_fn, |
| 86 | + output_transform_fn=output_transform_fn) |
| 87 | +model_zoo.register(name='torchvision_resnext50_32x4d', |
| 88 | + model_fn=tm.resnext50_32x4d, |
| 89 | + data_gen_fn=data_gen_fn, |
| 90 | + output_transform_fn=output_transform_fn) |
| 91 | +model_zoo.register(name='torchvision_shufflenet_v2_x0_5', |
| 92 | + model_fn=tm.shufflenet_v2_x0_5, |
| 93 | + data_gen_fn=data_gen_fn, |
| 94 | + output_transform_fn=output_transform_fn) |
| 95 | +model_zoo.register(name='torchvision_squeezenet1_0', |
| 96 | + model_fn=tm.squeezenet1_0, |
| 97 | + data_gen_fn=data_gen_fn, |
| 98 | + output_transform_fn=output_transform_fn) |
| 99 | + |
| 100 | +model_zoo.register(name='torchvision_vgg11', |
| 101 | + model_fn=tm.vgg11, |
| 102 | + data_gen_fn=data_gen_fn, |
| 103 | + output_transform_fn=output_transform_fn) |
| 104 | +model_zoo.register(name='torchvision_wide_resnet50_2', |
| 105 | + model_fn=tm.wide_resnet50_2, |
| 106 | + data_gen_fn=data_gen_fn, |
| 107 | + output_transform_fn=output_transform_fn) |
| 108 | + |
| 109 | +if version.parse(torchvision.__version__) >= version.parse('0.12.0'): |
| 110 | + model_zoo.register(name='torchvision_vit_b_16', |
| 111 | + model_fn=tm.vit_b_16, |
| 112 | + data_gen_fn=data_gen_fn, |
| 113 | + output_transform_fn=output_transform_fn) |
| 114 | + model_zoo.register(name='torchvision_convnext_base', |
| 115 | + model_fn=tm.convnext_base, |
| 116 | + data_gen_fn=data_gen_fn, |
| 117 | + output_transform_fn=output_transform_fn, |
| 118 | + model_attribute=ModelAttribute(has_stochastic_depth_prob=True)) |
| 119 | + |
| 120 | +if version.parse(torchvision.__version__) >= version.parse('0.13.0'): |
| 121 | + model_zoo.register( |
| 122 | + name='torchvision_swin_s', |
| 123 | + model_fn=swin_s, |
| 124 | + data_gen_fn=data_gen_fn, |
| 125 | + output_transform_fn=swin_s_output_output_transform_fn, |
| 126 | + ) |
| 127 | + model_zoo.register(name='torchvision_efficientnet_v2_s', |
| 128 | + model_fn=tm.efficientnet_v2_s, |
| 129 | + data_gen_fn=data_gen_fn, |
| 130 | + output_transform_fn=output_transform_fn, |
| 131 | + model_attribute=ModelAttribute(has_stochastic_depth_prob=True)) |
0 commit comments