Skip to content

Commit 12b595b

Browse files
authored
Add files via upload
0 parents  commit 12b595b

24 files changed

+1100
-0
lines changed

onnxruntime/imgs/bus.jpg

476 KB
Loading

onnxruntime/imgs/dog.jpg

160 KB
Loading

onnxruntime/imgs/person.jpg

111 KB
Loading

onnxruntime/imgs/street.png

2.64 MB
Loading

onnxruntime/imgs/zidane.jpg

165 KB
Loading

onnxruntime/main.cpp

Lines changed: 310 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,310 @@
1+
#define _CRT_SECURE_NO_WARNINGS
2+
#include <iostream>
3+
#include <fstream>
4+
#include <string>
5+
#include <math.h>
6+
#include <opencv2/imgproc.hpp>
7+
#include <opencv2/highgui.hpp>
8+
//#include <cuda_provider_factory.h>
9+
#include <onnxruntime_cxx_api.h>
10+
11+
using namespace cv;
12+
using namespace std;
13+
using namespace Ort;
14+
15+
typedef struct BoxInfo
16+
{
17+
float x1;
18+
float y1;
19+
float x2;
20+
float y2;
21+
float score;
22+
int label;
23+
} BoxInfo;
24+
25+
class NanoDet_Plus
26+
{
27+
public:
28+
NanoDet_Plus(string model_path, string classesFile, float nms_threshold, float objThreshold);
29+
void detect(Mat& cv_image);
30+
private:
31+
float score_threshold = 0.5;
32+
float nms_threshold = 0.5;
33+
vector<string> class_names;
34+
int num_class;
35+
36+
Mat resize_image(Mat srcimg, int *newh, int *neww, int *top, int *left);
37+
vector<float> input_image_;
38+
void normalize_(Mat img);
39+
void softmax_(const float* x, float* y, int length);
40+
void generate_proposal(vector<BoxInfo>& generate_boxes, const float* preds);
41+
void nms(vector<BoxInfo>& input_boxes);
42+
const bool keep_ratio = false;
43+
int inpWidth;
44+
int inpHeight;
45+
int reg_max;
46+
const int num_stages = 4;
47+
const int stride[4] = { 8,16,32,64 };
48+
const float mean[3] = { 103.53, 116.28, 123.675 };
49+
const float stds[3] = { 57.375, 57.12, 58.395 };
50+
51+
Env env = Env(ORT_LOGGING_LEVEL_ERROR, "nanodetplus");
52+
Ort::Session *ort_session = nullptr;
53+
SessionOptions sessionOptions = SessionOptions();
54+
vector<char*> input_names;
55+
vector<char*> output_names;
56+
vector<vector<int64_t>> input_node_dims; // >=1 outputs
57+
vector<vector<int64_t>> output_node_dims; // >=1 outputs
58+
};
59+
60+
NanoDet_Plus::NanoDet_Plus(string model_path, string classesFile, float nms_threshold, float objThreshold)
61+
{
62+
ifstream ifs(classesFile.c_str());
63+
string line;
64+
while (getline(ifs, line)) this->class_names.push_back(line);
65+
this->num_class = class_names.size();
66+
this->nms_threshold = nms_threshold;
67+
this->score_threshold = objThreshold;
68+
69+
std::wstring widestr = std::wstring(model_path.begin(), model_path.end());
70+
//OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0);
71+
sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);
72+
ort_session = new Session(env, widestr.c_str(), sessionOptions);
73+
size_t numInputNodes = ort_session->GetInputCount();
74+
size_t numOutputNodes = ort_session->GetOutputCount();
75+
AllocatorWithDefaultOptions allocator;
76+
for (int i = 0; i < numInputNodes; i++)
77+
{
78+
input_names.push_back(ort_session->GetInputName(i, allocator));
79+
Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);
80+
auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
81+
auto input_dims = input_tensor_info.GetShape();
82+
input_node_dims.push_back(input_dims);
83+
}
84+
for (int i = 0; i < numOutputNodes; i++)
85+
{
86+
output_names.push_back(ort_session->GetOutputName(i, allocator));
87+
Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
88+
auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
89+
auto output_dims = output_tensor_info.GetShape();
90+
output_node_dims.push_back(output_dims);
91+
/*for (int j = 0; j < output_dims.size(); j++)
92+
{
93+
cout << output_dims[j] << ",";
94+
}
95+
cout << endl;*/
96+
}
97+
this->inpHeight = input_node_dims[0][2];
98+
this->inpWidth = input_node_dims[0][3];
99+
this->reg_max = (output_node_dims[0][output_node_dims[0].size() - 1] - this->num_class) / 4 - 1;
100+
}
101+
102+
Mat NanoDet_Plus::resize_image(Mat srcimg, int *newh, int *neww, int *top, int *left)
103+
{
104+
int srch = srcimg.rows, srcw = srcimg.cols;
105+
*newh = this->inpHeight;
106+
*neww = this->inpWidth;
107+
Mat dstimg;
108+
if (this->keep_ratio && srch != srcw) {
109+
float hw_scale = (float)srch / srcw;
110+
if (hw_scale > 1) {
111+
*newh = this->inpHeight;
112+
*neww = int(this->inpWidth / hw_scale);
113+
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
114+
*left = int((this->inpWidth - *neww) * 0.5);
115+
copyMakeBorder(dstimg, dstimg, 0, 0, *left, this->inpWidth - *neww - *left, BORDER_CONSTANT, 0);
116+
}
117+
else {
118+
*newh = (int)this->inpHeight * hw_scale;
119+
*neww = this->inpWidth;
120+
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
121+
*top = (int)(this->inpHeight - *newh) * 0.5;
122+
copyMakeBorder(dstimg, dstimg, *top, this->inpHeight - *newh - *top, 0, 0, BORDER_CONSTANT, 0);
123+
}
124+
}
125+
else {
126+
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
127+
}
128+
return dstimg;
129+
}
130+
131+
void NanoDet_Plus::normalize_(Mat img)
132+
{
133+
// img.convertTo(img, CV_32F);
134+
int row = img.rows;
135+
int col = img.cols;
136+
this->input_image_.resize(row * col * img.channels());
137+
for (int c = 0; c < 3; c++)
138+
{
139+
for (int i = 0; i < row; i++)
140+
{
141+
for (int j = 0; j < col; j++)
142+
{
143+
float pix = img.ptr<uchar>(i)[j * 3 + c];
144+
//this->input_image_[c * row * col + i * col + j] = (pix / 255.0 - mean[c] / 255.0) / (stds[c] / 255.0);
145+
this->input_image_[c * row * col + i * col + j] = (pix - mean[c]) / stds[c];
146+
}
147+
}
148+
}
149+
}
150+
151+
void NanoDet_Plus::softmax_(const float* x, float* y, int length)
152+
{
153+
float sum = 0;
154+
int i = 0;
155+
for (i = 0; i < length; i++)
156+
{
157+
y[i] = exp(x[i]);
158+
sum += y[i];
159+
}
160+
for (i = 0; i < length; i++)
161+
{
162+
y[i] /= sum;
163+
}
164+
}
165+
166+
void NanoDet_Plus::generate_proposal(vector<BoxInfo>& generate_boxes, const float* preds)
167+
{
168+
const int reg_1max = reg_max + 1;
169+
const int len = this->num_class + 4 * reg_1max;
170+
for (int n = 0; n < this->num_stages; n++)
171+
{
172+
const int stride_ = this->stride[n];
173+
const int num_grid_y = (int)ceil((float)this->inpHeight / stride_);
174+
const int num_grid_x = (int)ceil((float)this->inpWidth / stride_);
175+
////cout << "num_grid_x=" << num_grid_x << ",num_grid_y=" << num_grid_y << endl;
176+
177+
for (int i = 0; i < num_grid_y; i++)
178+
{
179+
for (int j = 0; j < num_grid_x; j++)
180+
{
181+
int max_ind = 0;
182+
float max_score = 0;
183+
for (int k = 0; k < num_class; k++)
184+
{
185+
if (preds[k] > max_score)
186+
{
187+
max_score = preds[k];
188+
max_ind = k;
189+
}
190+
}
191+
if (max_score >= score_threshold)
192+
{
193+
const float* pbox = preds + this->num_class;
194+
float dis_pred[4];
195+
float* y = new float[reg_1max];
196+
for (int k = 0; k < 4; k++)
197+
{
198+
softmax_(pbox + k * reg_1max, y, reg_1max);
199+
float dis = 0.f;
200+
for (int l = 0; l < reg_1max; l++)
201+
{
202+
dis += l * y[l];
203+
}
204+
dis_pred[k] = dis * stride_;
205+
}
206+
delete[] y;
207+
/*float pb_cx = (j + 0.5f) * stride_ - 0.5;
208+
float pb_cy = (i + 0.5f) * stride_ - 0.5;*/
209+
float pb_cx = j * stride_ ;
210+
float pb_cy = i * stride_;
211+
float x0 = pb_cx - dis_pred[0];
212+
float y0 = pb_cy - dis_pred[1];
213+
float x1 = pb_cx + dis_pred[2];
214+
float y1 = pb_cy + dis_pred[3];
215+
generate_boxes.push_back(BoxInfo{ x0, y0, x1, y1, max_score, max_ind });
216+
}
217+
preds += len;
218+
}
219+
}
220+
}
221+
222+
}
223+
224+
void NanoDet_Plus::nms(vector<BoxInfo>& input_boxes)
225+
{
226+
sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; });
227+
vector<float> vArea(input_boxes.size());
228+
for (int i = 0; i < int(input_boxes.size()); ++i)
229+
{
230+
vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1)
231+
* (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
232+
}
233+
234+
vector<bool> isSuppressed(input_boxes.size(), false);
235+
for (int i = 0; i < int(input_boxes.size()); ++i)
236+
{
237+
if (isSuppressed[i]) { continue; }
238+
for (int j = i + 1; j < int(input_boxes.size()); ++j)
239+
{
240+
if (isSuppressed[j]) { continue; }
241+
float xx1 = (max)(input_boxes[i].x1, input_boxes[j].x1);
242+
float yy1 = (max)(input_boxes[i].y1, input_boxes[j].y1);
243+
float xx2 = (min)(input_boxes[i].x2, input_boxes[j].x2);
244+
float yy2 = (min)(input_boxes[i].y2, input_boxes[j].y2);
245+
246+
float w = (max)(float(0), xx2 - xx1 + 1);
247+
float h = (max)(float(0), yy2 - yy1 + 1);
248+
float inter = w * h;
249+
float ovr = inter / (vArea[i] + vArea[j] - inter);
250+
251+
if (ovr >= this->nms_threshold)
252+
{
253+
isSuppressed[j] = true;
254+
}
255+
}
256+
}
257+
// return post_nms;
258+
int idx_t = 0;
259+
input_boxes.erase(remove_if(input_boxes.begin(), input_boxes.end(), [&idx_t, &isSuppressed](const BoxInfo& f) { return isSuppressed[idx_t++]; }), input_boxes.end());
260+
}
261+
262+
void NanoDet_Plus::detect(Mat& srcimg)
263+
{
264+
int newh = 0, neww = 0, top = 0, left = 0;
265+
Mat cv_image = srcimg.clone();
266+
Mat dst = this->resize_image(cv_image, &newh, &neww, &top, &left);
267+
this->normalize_(dst);
268+
array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };
269+
270+
auto allocator_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
271+
Value input_tensor_ = Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size());
272+
273+
// ¿ªÊ¼ÍÆÀí
274+
vector<Value> ort_outputs = ort_session->Run(RunOptions{ nullptr }, &input_names[0], &input_tensor_, 1, output_names.data(), output_names.size()); // ¿ªÊ¼ÍÆÀí
275+
/////generate proposals
276+
vector<BoxInfo> generate_boxes;
277+
const float* preds = ort_outputs[0].GetTensorMutableData<float>();
278+
generate_proposal(generate_boxes, preds);
279+
280+
//// Perform non maximum suppression to eliminate redundant overlapping boxes with
281+
//// lower confidences
282+
nms(generate_boxes);
283+
float ratioh = (float)cv_image.rows / newh;
284+
float ratiow = (float)cv_image.cols / neww;
285+
for (size_t i = 0; i < generate_boxes.size(); ++i)
286+
{
287+
int xmin = (int)max((generate_boxes[i].x1 - left)*ratiow, 0.f);
288+
int ymin = (int)max((generate_boxes[i].y1 - top)*ratioh, 0.f);
289+
int xmax = (int)min((generate_boxes[i].x2 - left)*ratiow, (float)cv_image.cols);
290+
int ymax = (int)min((generate_boxes[i].y2 - top)*ratioh, (float)cv_image.rows);
291+
rectangle(srcimg, Point(xmin, ymin), Point(xmax, ymax), Scalar(0, 0, 255), 2);
292+
string label = format("%.2f", generate_boxes[i].score);
293+
label = this->class_names[generate_boxes[i].label] + ":" + label;
294+
putText(srcimg, label, Point(xmin, ymin - 5), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
295+
}
296+
}
297+
298+
int main()
299+
{
300+
NanoDet_Plus mynet("onnxmodel/nanodet-plus-m_320.onnx", "onnxmodel/coco.names", 0.5, 0.5); /// choice = ["picodet_m_320_coco.onnx", "picodet_m_416_coco.onnx", "picodet_s_320_coco.onnx", "picodet_s_416_coco.onnx"]
301+
string imgpath = "imgs/person.jpg";
302+
Mat srcimg = imread(imgpath);
303+
mynet.detect(srcimg);
304+
305+
static const string kWinName = "Deep learning object detection in ONNXRuntime";
306+
namedWindow(kWinName, WINDOW_NORMAL);
307+
imshow(kWinName, srcimg);
308+
waitKey(0);
309+
destroyAllWindows();
310+
}

0 commit comments

Comments
 (0)