Skip to content

Commit 12a9c92

Browse files
authored
Team A Wiki Entry on Training Darknet with a Custom Dataset (RoboticsKnowledgebase#99)
* Create train-darknet-on-custom-dataset.md Team A wiki contribution * Update navigation.yml * Create open-source-datasets.md Grace's Bonus Wiki Contribution * Update navigation.yml * Added header and put links Into markdown format * Bonus assignment header and links markdown format * Update open-source-datasets.md fixed spacing after links
1 parent 233fde2 commit 12a9c92

File tree

3 files changed

+438
-0
lines changed

3 files changed

+438
-0
lines changed

_data/navigation.yml

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -108,12 +108,15 @@ wiki:
108108
- title: Machine Learning
109109
url: /wiki/machine-learning/
110110
children:
111+
- title: Training darknet on a custom dataset
112+
url: /wiki/machine-learning/train-darknet-on-custom-dataset/
111113
- title: Custom data-set for segmentation
112114
url: /wiki/machine-learning/custom-semantic-data/
113115
- title: Python libraries for Reinforcement Learning
114116
url: /wiki/machine-learning/python-libraries-for-reinforcement-learning/
115117
title: Reinforcement Learning
116118
url: /wiki/machine-learning/intro-to-rl
119+
117120
- title: State Estimation
118121
url: /wiki/state-estimation/
119122
children:
@@ -261,6 +264,8 @@ wiki:
261264
children:
262265
- title: Traffic Modelling Datasets
263266
- url: /wiki/datasets/traffic-modelling-datasets/
267+
- title: Open-Source Datasets
268+
- url: /wiki/datasets/open-source-datasets/
264269
- title: Planning
265270
url: /wiki/planning/
266271
children:

wiki/datasets/open-source-datasets.md

Lines changed: 136 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,136 @@
1+
---
2+
# Date the article was last updated like this:
3+
date: 2021-04-27 # YYYY-MM-DD
4+
# Article's title:
5+
title: Open Source Datasets
6+
---
7+
This is an article to teach you how to make your own dataset or where to find open-source datasets that are free to use and download.
8+
9+
## Creating a Custom Dataset
10+
Capture your own images with a camera then create labels for each image that indicates the bounding boxes and IDs of the object class captured.
11+
12+
*Option 1:*
13+
Create labels for all of the images using Yolo_mark [1]. The repo and instructions for use can be found [here](https://github.com/AlexeyAB/Yolo_mark). These labels will be made in the darknet format.
14+
15+
*Option 2:*
16+
Use Innotescus, a Pittsburgh startup working on high-performance image annotation. They offer free academic accounts to CMU students. You can upload datasets and have multiple people working on annotations. There are task metrics that track how many of each class of image are annotated and show heat maps of their relative locations within an image so you can ensure proper data distributions.
17+
18+
Create a free beta account [here](https://innotescus.io/demo/)
19+
20+
21+
## Open-Source Datasets:
22+
### General Datasets
23+
[OpenImages](https://storage.googleapis.com/openimages/web/index.html)
24+
25+
[MS COCO](https://cocodataset.org/#home)
26+
27+
[Labelme](http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php)
28+
29+
[ImageNet](http://image-net.org/)
30+
31+
[COIL100](http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php)
32+
33+
Image to Language:
34+
[Visual Genome](http://visualgenome.org/)
35+
[Visual Qa](http://www.visualqa.org/)
36+
37+
[CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html)
38+
39+
40+
### Specific Application Datasets:
41+
42+
[Chess Pieces](https://public.roboflow.com/object-detection/chess-full)
43+
44+
[BCCD](https://public.roboflow.com/object-detection/bccd)
45+
46+
[Mountain Dew](https://public.roboflow.com/object-detection/mountain-dew-commercial)
47+
48+
[Pistols](https://public.roboflow.com/object-detection/pistols)
49+
50+
[Packages](https://public.roboflow.com/object-detection/packages-dataset)
51+
52+
[6-sided dice](https://public.roboflow.com/object-detection/dice)
53+
54+
[Boggle board](https://public.roboflow.com/object-detection/boggle-boards)
55+
56+
[Uno Cards](https://public.roboflow.com/object-detection/uno-cards)
57+
58+
[Lego Bricks](https://www.kaggle.com/joosthazelzet/lego-brick-images)
59+
60+
[YouTube](https://research.google.com/youtube8m/index.html)
61+
62+
[Synthetic Fruit](https://public.roboflow.com/object-detection/synthetic-fruit)
63+
64+
[Fruit](https://public.roboflow.com/classification/fruits-dataset)
65+
66+
Flowers:
67+
[Flower Classification 1](https://public.roboflow.com/classification/flowers_classification)
68+
[Flower Classification 2](https://public.roboflow.com/classification/flowers)
69+
[Flower Classification 3](http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html)
70+
71+
Plants:
72+
[Plant Doc](https://public.roboflow.com/object-detection/plantdoc)
73+
[Plant Analysis](https://www.plant-image-analysis.org/dataset)
74+
75+
[Wildfire smoke](https://public.roboflow.com/object-detection/wildfire-smoke)
76+
77+
[Aerial Maritime Drone](https://public.roboflow.com/object-detection/aerial-maritime)
78+
79+
[Anki Vector Robot](https://public.roboflow.com/object-detection/robot)
80+
81+
[Home Objects](http://www.vision.caltech.edu/pmoreels/Datasets/Home_Objects_06/)
82+
83+
Indoor Room Scenes:
84+
[Princeton lsun](http://lsun.cs.princeton.edu/2016/)
85+
[MIT toralba](http://web.mit.edu/torralba/www/indoor.html)
86+
87+
[Places](http://places.csail.mit.edu/index.html)
88+
89+
[Parking Lot](https://public.roboflow.com/object-detection/pklot)
90+
91+
[Car Models](http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/index.html)
92+
93+
[Improved Udacity Self Driving Car](https://public.roboflow.com/object-detection/self-driving-car)
94+
95+
[Pothole](https://public.roboflow.com/object-detection/pothole)
96+
97+
[Hard Hat](https://public.roboflow.com/object-detection/hard-hat-workers)
98+
99+
[Masks](https://public.roboflow.com/object-detection/mask-wearing)
100+
101+
#### People and Animals:
102+
[Aquarium](https://public.roboflow.com/object-detection/aquarium)
103+
104+
[Brackish Underwater](https://public.roboflow.com/object-detection/brackish-underwater)
105+
106+
[Racoon](https://public.roboflow.com/object-detection/raccoon)
107+
108+
[Thermal Cheetah](https://public.roboflow.com/object-detection/thermal-cheetah)
109+
110+
[ASL](https://public.roboflow.com/object-detection/american-sign-language-letters)
111+
112+
[RPS](https://public.roboflow.com/classification/rock-paper-scissors)
113+
114+
[Human Hands](https://public.roboflow.com/object-detection/hands)
115+
116+
[Human Faces](http://vis-www.cs.umass.edu/lfw/)
117+
118+
[Celebrity Faces](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)
119+
120+
[Thermal Dogs and People](https://public.roboflow.com/object-detection/thermal-dogs-and-people)
121+
122+
[Dogs](http://vision.stanford.edu/aditya86/ImageNetDogs/)
123+
124+
[Dogs and Cats](https://public.roboflow.com/object-detection/oxford-pets)
125+
126+
127+
## Summary
128+
We reviewed how to create labels for custom images to build a dataset. We also reviewed where to access specific and general open-source datasets depending on your application.
129+
130+
## See Also:
131+
- Using your [custom dataset to train YOLO on darknet for object detection](https://github.com/RoboticsKnowledgebase/roboticsknowledgebase.github.io.git/wiki/machine-learning/train-darknet-on-custom-dataset)
132+
133+
## References
134+
[1] AlexeyAB (2019) Yolo_mark (Version ea049f3). <https://github.com/AlexeyAB/Yolo_mark>.
135+
136+

0 commit comments

Comments
 (0)