-
Notifications
You must be signed in to change notification settings - Fork 22
/
capsule_network_emb.py
743 lines (642 loc) · 30.8 KB
/
capsule_network_emb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
"""
Dynamic Routing Between Capsules
https://arxiv.org/abs/1710.09829
PyTorch implementation by Kenta Iwasaki @ Gram.AI.
CapsRT implemented by horsepurve.
"""
import torch
import torch.nn.functional as F
from torch import nn
import numpy as np
from torch.autograd import Variable
import pickle
from scipy import sparse
from config import *
CNN_EMB = True # False #
BATCH_SIZE = 16 # 16
NUM_CLASSES = 10
NUM_EPOCHS = 20
NUM_ROUTING_ITERATIONS = 1
CUDA = True # False #
LR = 0.01
# train_path = 'data/dia_train_269.txt' # 'data/mod_train_2.txt' # 'data/unmod_train_2.txt' # 'data/SCX_train_42.txt' #
# test_path = 'data/dia_test_269.txt' # 'data/mod_test_2.txt' # 'data/unmod_test_2.txt' # 'data/SCX_test_42.txt' #
# result_path = 'dia_pred_269.txt' # 'mod_pred_2.txt' # 'unmod_pred_2.txt' # 'SCX_pred_42.txt' #
RTdata_path = 'dia.pkl' # 'mod.pkl' # 'unmod.pkl' # 'SCX.pkl' #
LOAD_DATA = True # False #
# TODO: add max_length to config.py
## max_length = 66 # 66 # 50 # 38 # 50 #
# log_path = ''
if '' == dict_path:
dict_path = train_path
from RTdata_emb import Dictionary, RTdata, Pearson, Spearman, Delta_t95, DATA_AUGMENTATION, Corpus
dictionary = Dictionary(dict_path)
'''
if True == LOAD_DATA:
dictionary = Dictionary(dict_path)
RTtrain = RTdata(dictionary, max_length, train_path)
RTtest = RTdata(dictionary, max_length, test_path)
with open(RTdata_path, 'wb') as output:
pickle.dump(dictionary, output)
pickle.dump(RTtrain, output)
pickle.dump(RTtest, output)
if False == LOAD_DATA:
with open(RTdata_path, 'rb') as input:
dictionary = pickle.load(input)
RTtrain = pickle.load(input)
RTtest = pickle.load(input)
print('>> note: load pre-read RTdata from:', RTdata_path)
# DATA_AUGMENTATION = True
SPARSE = True
def desparse(RTtt):
X = np.zeros((RTtt.number_seq, RTtt.N_aa, RTtt.N_time_step)) # DATA_AUGMENTATION->*2
for i in range(RTtt.number_seq): # DATA_AUGMENTATION->*2
# sparse to dense
X[i,::] = RTtt.X[i].todense()
RTtt.X = X
if True == SPARSE:
print('>> note: de-sparse for both train & test data.')
desparse(RTtrain)
desparse(RTtest)
'''
def softmax(input, dim=1):
transposed_input = input.transpose(dim, len(input.size()) - 1)
# print(transposed_input.contiguous().view(-1, transposed_input.size(-1)).shape)
'''
PyTorch 0.3.0:
UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.
'''
softmaxed_output = F.softmax(transposed_input.contiguous().view(-1, transposed_input.size(-1)),dim=1)
return softmaxed_output.view(*transposed_input.size()).transpose(dim, len(input.size()) - 1)
def augmentation(x, max_shift=2):
_, _, height, width = x.size()
h_shift, w_shift = np.random.randint(-max_shift, max_shift + 1, size=2)
source_height_slice = slice(max(0, h_shift), h_shift + height)
source_width_slice = slice(max(0, w_shift), w_shift + width)
target_height_slice = slice(max(0, -h_shift), -h_shift + height)
target_width_slice = slice(max(0, -w_shift), -w_shift + width)
shifted_image = torch.zeros(*x.size())
shifted_image[:, :, source_height_slice, source_width_slice] = x[:, :, target_height_slice, target_width_slice]
return shifted_image.float() # Note float here!
class CapsuleLayer(nn.Module):
def __init__(self,
num_capsules,
num_route_nodes,
in_channels,
out_channels,
kernel_size=None,
stride=None,
num_iterations=NUM_ROUTING_ITERATIONS):
super(CapsuleLayer, self).__init__()
self.num_route_nodes = num_route_nodes
self.num_iterations = num_iterations
self.num_capsules = num_capsules
if num_route_nodes != -1:
self.route_weights = nn.Parameter(torch.randn(num_capsules,
num_route_nodes,
in_channels,
out_channels))
else:
self.capsules = nn.ModuleList(
[nn.Conv2d(in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=0) for _ in
range(num_capsules)])
def squash(self, tensor, dim=-1):
squared_norm = (tensor ** 2).sum(dim=dim, keepdim=True)
scale = squared_norm / (1 + squared_norm)
return scale * tensor / torch.sqrt(squared_norm)
def forward(self, x):
if self.num_route_nodes != -1:
priors = x[None, :, :, None, :] @ self.route_weights[:, None, :, :, :]
if True == CUDA:
logits = Variable(torch.zeros(*priors.size())).cuda()
if False == CUDA:
logits = Variable(torch.zeros(*priors.size()))
for i in range(self.num_iterations):
probs = softmax(logits, dim=2)
outputs = self.squash((probs * priors).sum(dim=2, keepdim=True))
if i != self.num_iterations - 1:
delta_logits = (priors * outputs).sum(dim=-1, keepdim=True)
logits = logits + delta_logits
else:
outputs = [capsule(x).view(x.size(0), -1, 1) for capsule in self.capsules]
outputs = torch.cat(outputs, dim=-1)
outputs = self.squash(outputs)
return outputs
param_2D = {'data' : 'mnist',
'dim' : 2,
'conv1_kernel' : 9,
'pri_caps_kernel' : 9,
'stride' : 2,
'digit_caps_nodes' : 32 * 6 * 6,
'NUM_CLASSES' : NUM_CLASSES}
param_1D = {'data' : 'mnist',
'dim' : 1,
'conv1_kernel' : (28, 9),
'pri_caps_kernel' : (1, 9),
'stride' : 1,
'digit_caps_nodes' : 32 * 1 * 12,
'NUM_CLASSES' : 1}
# conv1_kernel = 15
# conv2_kernel = 15
param_1D_rt = {'data' : 'rt',
'dim' : 1,
'conv1_kernel' : (len(dictionary), conv1_kernel),
'pri_caps_kernel' : (1, conv2_kernel),
'stride' : 1,
'digit_caps_nodes' : 32 * 1 * (max_length - conv1_kernel*2 + 2 - conv2_kernel + 1), # 32 # Note: number of conv!
'NUM_CLASSES' : 1}
param = param_1D_rt
if 2 == param['dim']:
print('>> note: using image mode.')
if 1 == param['dim']:
print('>> note: using seq mode.')
class CapsuleNet(nn.Module):
def __init__(self,conv1_kernel,conv2_kernel):
super(CapsuleNet, self).__init__()
EMB_SIZE = 0
if True == CNN_EMB:
# self.emb = nn.Embedding(len(dictionary), len(dictionary))
# Note: if using embedding, EMB_SIZE can be any value, and we choose 20 here
EMB_SIZE = 20
self.emb = nn.Embedding(len(dictionary), EMB_SIZE) # we use 20 for all data
else:
# Note: if using one-hot encoding, EMB_SIZE must be the same as len(dictionary)
EMB_SIZE = len(dictionary)
self.conv1 = nn.Conv2d(in_channels=1,
out_channels=256, # 256
kernel_size=(EMB_SIZE, conv1_kernel), # param['conv1_kernel'], # (28, 9), # 9,
stride=1)
''''''
self.bn1 = nn.BatchNorm2d(256) # Note: do we need this or not?
self.conv2 = nn.Conv2d(in_channels=256,
out_channels=256, # 256
kernel_size=(1, conv1_kernel), # (28, 9), # 9,
stride=1)
self.bn2 = nn.BatchNorm2d(256)
'''
self.conv3 = nn.Conv2d(in_channels=128,
out_channels=256, # 256
kernel_size=(1, conv1_kernel), # (28, 9), # 9,
stride=1)
self.bn3 = nn.BatchNorm2d(256)
'''
self.primary_capsules = CapsuleLayer(num_capsules=8, # 8
num_route_nodes=-1,
in_channels=256, # 256
out_channels=32, # 32
kernel_size=(1, conv2_kernel), # param['pri_caps_kernel'], # (1, 9), # 9,
stride=param['stride']) # 1) # 2)
self.digit_capsules = CapsuleLayer(num_capsules=param['NUM_CLASSES'], # 1, #NUM_CLASSES, # DeepRT
num_route_nodes=32 * 1 * (max_length - conv1_kernel*2 + 2 - conv2_kernel + 1), # param['digit_caps_nodes'], # 32 * 1 * 12, # 32 * 6 * 6,
in_channels=8, # 8
out_channels=16) # max_length-conv1_kernel + 1) # 16
# add dropout:
# self.dropout = nn.Dropout(0.1) # not good!
# self.linear = nn.Linear((max_length-conv1_kernel+1)*256,16) # try residue: not good!
''' residue is not very good!
pad = 0
kernel_h = pad*2+1 # len + pad*2 - (kernel_h - 1) = len
self.conv_res = nn.Conv2d(in_channels=256,
out_channels=1, # 256
kernel_size=(1, kernel_h), # (28, 9), # 9,
stride=1)
#padding =(0,pad))
'''
self.decoder = nn.Sequential(
nn.Linear(16 * NUM_CLASSES, 512),
nn.ReLU(inplace=True),
nn.Linear(512, 1024),
nn.ReLU(inplace=True),
nn.Linear(1024, 784),
nn.Sigmoid()
)
def forward(self, x, y=None):
# print('>>dim: input', x.shape) # [batch, 1, 28, 28]
# print('>>dim: y', y) # [batch, 10] ~ [batch, NUM_CLASSES]
if True == CNN_EMB:
x = self.emb(x) # [batch, len] -> [batch, len, dict]
x = x.transpose(dim0=1, dim1=2) # -> [batch, dict, len]
x = x[:,None,:,:] # -> [batch, 1, dict, len]
# ^^^^^ pre-process x ^^^^^
x = F.relu(self.bn1(self.conv1(x)), inplace=True)
''' try residue: not good!
residue = x.view(x.shape[0],-1)
residue = self.linear(residue).view(residue.shape[0],1,16)
# another residue method
residue = F.relu(self.conv_res(x), inplace=True)
residue = residue.view(residue.shape[0],1,residue.shape[-1])
'''
# x = self.dropout(x)
x = F.relu(self.bn2(self.conv2(x)), inplace=True) # improvement
# x = F.relu(self.bn3(self.conv3(x)), inplace=True)
# print('>>dim: conv1', x.shape) # [batch, 256, 20, 20]
x = self.primary_capsules(x)
# print('>>dim: primary_capsules', x.shape) # [batch, 1152, 8] = [batch, 6*6*32, 8]
# print('>>dim: unsqueezeed', self.digit_capsules(x).shape) # [10, batch, 1, 1, 16] ~ [num_caps, batch, ...]
if 2 == param['dim']:
x = self.digit_capsules(x).squeeze().transpose(0, 1) # DeepRT
# [10, batch, 1, 1, 16] -> squeeze: [10, batch, 16] -> transpose: [batch, 10, 16]
if 1 == param['dim']:
x = self.digit_capsules(x).squeeze()[:, None, :]
# [1, batch, 1, 1, 16] -> squeeze: [batch, 16]
# print('>>dim: digit_capsules', x.shape) # [batch, 10, 16]
# add dropout:
# x = self.dropout(x)
# x = self.linear(x)
# x = F.sigmoid(x)
# x = x + residue # try residue: not good!
classes = (x ** 2).sum(dim=-1) ** 0.5
# print('>>dim: classes', classes) # [batch, 10]
if 2 == param['dim']:
classes = F.softmax(classes) # DeepRT
# print('>>dim: softmax', classes)
if y is None: # Note: not do this during training. Here y is only used for reconstruction
if 2 == param['dim']:
# In all batches, get the most active capsule.
# print('>>dim: reconstruction', classes) # [batch, 10]
_, max_length_indices = classes.max(dim=1)
# give: [torch.FloatTensor of size batch] and [torch.FloatTensor of size batch]
if True == CUDA:
y = Variable(torch.sparse.torch.eye(NUM_CLASSES)).cuda().index_select(dim=0, index=max_length_indices.data)
if False == CUDA:
y = Variable(torch.sparse.torch.eye(NUM_CLASSES)).index_select(dim=0, index=max_length_indices.data)
# generate a new y: [batch, 10] with each column having 1 in batch 0
if 2 == param['dim']:
# print('>>dim: x*y', x.shape, y.shape)
reconstructions = self.decoder((x * y[:, :, None]).view(x.size(0), -1))
# x: [batch, 10, 16], y: [batch, 10] -> [batch, 10, 1]
return classes, reconstructions
if 1 == param['dim']:
return classes, x # Note here
class CapsuleLoss(nn.Module):
def __init__(self):
super(CapsuleLoss, self).__init__()
self.reconstruction_loss = nn.MSELoss(size_average=False)
def forward(self, images, labels, classes, reconstructions):
if 2 == param['dim']:
# print('>>dim: labels', labels) # [batch, 10]
# print('>>dim: classes', classes) # [batch, 10]
left = F.relu(0.9 - classes, inplace=True) ** 2
right = F.relu(classes - 0.1, inplace=True) ** 2
margin_loss = labels * left + 0.5 * (1. - labels) * right
margin_loss = margin_loss.sum()
reconstruction_loss = self.reconstruction_loss(reconstructions, images)
loss = (margin_loss + 0.0005 * reconstruction_loss) / images.size(0)
# print('>>dim: loss', loss) # it's a single value
return loss
if 1 == param['dim']:
# print('>>dim: labels', labels) # torch.cuda.FloatTensor of size batch x 1
# print('>>dim: classes', classes) # [batch, 1]
'''
square = (labels - classes) ** 2
square = square.sort(dim=0,descending=False)[0]
cut = int(labels.shape[0]-1)
loss = (square[:cut]).sum()/cut
loss = loss ** 0.5 + square[cut] ** 0.5
'''
loss = ((labels - classes) ** 2).sum()/labels.shape[0] # MSE # Note: here it must be sum()
loss = loss ** 0.5 # RMSE
# print('>>dim: loss', loss)
return loss
def desparse(RTtt):
if False == DATA_AUGMENTATION:
X = np.zeros((RTtt.number_seq, RTtt.N_aa, RTtt.N_time_step)) # DATA_AUGMENTATION->*2
for i in range(RTtt.number_seq): # DATA_AUGMENTATION->*2
# sparse to dense
X[i,::] = RTtt.X[i].todense()
RTtt.X = X
else:
print('>> note: usnig data_augmentation')
X = np.zeros((RTtt.number_seq*2, RTtt.N_aa, RTtt.N_time_step)) # DATA_AUGMENTATION->*2
for i in range(RTtt.number_seq*2): # DATA_AUGMENTATION->*2
# sparse to dense
X[i,::] = RTtt.X[i].todense()
RTtt.X = X
if __name__ == "__main__":
# from torch.autograd import Variable
from torch.optim import Adam # Adam
from torchnet.engine import Engine
# from torchnet.logger import VisdomPlotLogger, VisdomLogger
# from torchvision.utils import make_grid
# from torchvision.datasets.mnist import MNIST
from tqdm import tqdm
import torchnet as tnt
import gc
from time import sleep, time
import timeit
T1 = timeit.default_timer()
# read data ========== ========== ========== ========== ========== ==========
# CNN_EMB = True
if False == CNN_EMB:
print('>> note: using one-hot encoding.')
if True == LOAD_DATA:
# dictionary = Dictionary(dict_path)
RTtrain = RTdata(dictionary, max_length, train_path)
RTtest = RTdata(dictionary, max_length, test_path)
with open(RTdata_path, 'wb') as output:
# pickle.dump(dictionary, output)
pickle.dump(RTtrain, output)
pickle.dump(RTtest, output)
if False == LOAD_DATA:
with open(RTdata_path, 'rb') as input:
# dictionary = pickle.load(input)
RTtrain = pickle.load(input)
RTtest = pickle.load(input)
print('>> note: load pre-read RTdata from:', RTdata_path)
# DATA_AUGMENTATION = True
SPARSE = True
# def desparse(RTtt):
# X = np.zeros((RTtt.number_seq, RTtt.N_aa, RTtt.N_time_step)) # DATA_AUGMENTATION->*2
# for i in range(RTtt.number_seq): # DATA_AUGMENTATION->*2
# # sparse to dense
# X[i,::] = RTtt.X[i].todense()
# RTtt.X = X
if True == SPARSE:
print('>> note: de-sparse for both train & test data.')
desparse(RTtrain)
desparse(RTtest)
if True == CNN_EMB:
print('>> note: using >>>embedding<<< method.')
corpus = Corpus(dictionary, # format: Corpus(dictionary, train_path, val_path='', test_path='', pad_length=0)
train_path,
test_path=test_path,
pad_length=max_length)
# read data ========== ========== ========== ========== ========== ==========
LOG = False
flog = open(log_path, 'w')
model = CapsuleNet(conv1_kernel,conv2_kernel)
if '' == pretrain_path:
pass
else:
model.load_state_dict(torch.load(pretrain_path)) # epoch.pt
print('>> note: load pre-trained model from:',pretrain_path)
if True == CUDA:
model.cuda()
print("# parameters:", sum(param.numel() for param in model.parameters()))
flog.write("# parameters:"+str(sum(param.numel() for param in model.parameters()))+'\n')
optimizer = Adam(model.parameters(), lr = LR)
# optimizer = SGD(model.parameters(), lr = LR/10., momentum = 0.5)
engine = Engine()
meter_loss = tnt.meter.AverageValueMeter()
if 2 == param['dim']:
meter_accuracy = tnt.meter.ClassErrorMeter(accuracy=True)
confusion_meter = tnt.meter.ConfusionMeter(NUM_CLASSES, normalized=True)
if 1 == param['dim']:
pass
# meter_mse = tnt.meter.MSEMeter()
if True == LOG:
train_loss_logger = VisdomPlotLogger('line', opts={'title': 'Train Loss'})
train_error_logger = VisdomPlotLogger('line', opts={'title': 'Train Accuracy'})
test_loss_logger = VisdomPlotLogger('line', opts={'title': 'Test Loss'})
test_accuracy_logger = VisdomPlotLogger('line', opts={'title': 'Test Accuracy'})
confusion_logger = VisdomLogger('heatmap', opts={'title': 'Confusion matrix',
'columnnames': list(range(NUM_CLASSES)),
'rownames': list(range(NUM_CLASSES))})
if 2 == param['dim']:
ground_truth_logger = VisdomLogger('image', opts={'title': 'Ground Truth'})
reconstruction_logger = VisdomLogger('image', opts={'title': 'Reconstruction'})
capsule_loss = CapsuleLoss()
def get_iterator(mode):
dataset = MNIST(root='./data', download=True, train=mode)
data = getattr(dataset, 'train_data' if mode else 'test_data')[:47]
# [torch.ByteTensor of size number x 28 x 28]
labels = getattr(dataset, 'train_labels' if mode else 'test_labels')[:47]
# [torch.LongTensor of size number]
tensor_dataset = tnt.dataset.TensorDataset([data, labels])
return tensor_dataset.parallel(batch_size=BATCH_SIZE, num_workers=4, shuffle=mode)
if False == CNN_EMB:
data_train = torch.FloatTensor(RTtrain.X)
label_train = torch.FloatTensor(RTtrain.y)
print('>> note: delete RTtrain.')
del RTtrain
gc.collect()
print('>> sleeping...')
for i in range(5):
print('~.~')
print('>> wake up!')
if True == CNN_EMB:
data_train = corpus.train
label_train = corpus.train_label
def get_rt_iterator(mode):
if mode:
data = data_train # Note: here must be FloatTensor not ByteTensor!
labels = label_train
else:
if False == CNN_EMB:
data = torch.FloatTensor(RTtest.X)
labels = torch.FloatTensor(RTtest.y)
if True == CNN_EMB:
data = corpus.test
labels = corpus.test_label
# print('>>dim: test data:', data.shape, labels.shape)
tensor_dataset = tnt.dataset.TensorDataset([data, labels])
return tensor_dataset.parallel(batch_size=BATCH_SIZE, num_workers=1, shuffle=mode) # 1 for heatmap
def processor(sample):
data, labels, training = sample
# print('>>dim: data, labels, training', data.shape, labels.shape, training)
# torch.Size([batch, 28, 28]) torch.Size([batch]) True
if 'mnist' == param['data']:
data = augmentation(data.unsqueeze(1).float() / 255.0)
# print('>>dim: data augmentation', data.shape) # torch.Size([batch, 1, 28, 28])
# print('>>dim: labels', labels) # Note: labels is already LongTensor?
if 'rt' == param['data']:
if False == CNN_EMB:
data = data[:, None, :, :] # Note: add dimension
if True == CNN_EMB:
pass
if 2 == param['dim']:
# for classification, we use LongTensor
labels = torch.LongTensor(labels)
labels = torch.sparse.torch.eye(NUM_CLASSES).index_select(dim=0, index=labels)
if 1 == param['dim']:
# for regression, we use FloatTensor
labels = torch.FloatTensor(labels.numpy())
labels = labels.view(-1, 1) # from [batch] to [batch, 1]
if True == CUDA:
data = Variable(data).cuda()
labels = Variable(labels).cuda()
if False == CUDA:
data = Variable(data)
labels = Variable(labels)
if training:
classes, reconstructions = model(data, labels)
else:
classes, reconstructions = model(data)
loss = capsule_loss(data, labels, classes, reconstructions)
return loss, classes
def reset_meters():
meter_loss.reset()
if 2 == param['dim']:
meter_accuracy.reset()
confusion_meter.reset()
if 1 == param['dim']:
pass
# meter_mse.reset()
def on_sample(state):
state['sample'].append(state['train'])
def on_forward(state):
'''
So it is just used for recording?
'''
if 1 == param['dim']:
# print('>>dim: state output', state['output'].data.view(-1))
# torch.FloatTensor of size [batch x 10]
# print('>>dim: state sample', state['sample'][1])
# torch.LongTensor of size [batch]
# (1): [batch, 1] (2): [batch], so we view (1) as [batch], but no view is fine
pass
# meter_mse.add(state['output'].data, torch.FloatTensor(state['sample'][1].numpy()))
if 2 == param['dim']:
meter_accuracy.add(state['output'].data, torch.LongTensor(state['sample'][1]))
confusion_meter.add(state['output'].data, torch.LongTensor(state['sample'][1]))
meter_loss.add(state['loss'].data[0])
def on_start_epoch(state):
reset_meters()
state['iterator'] = tqdm(state['iterator'])
def on_end_epoch(state):
if 2 == param['dim']:
print('[Epoch %d] Training Loss: %.4f (Accuracy: %.2f%%)' % (
state['epoch'], meter_loss.value()[0], meter_accuracy.value()[0]))
flog.write('[Epoch %d] Training Loss: %.4f (Accuracy: %.2f%%)\n' % (
state['epoch'], meter_loss.value()[0], meter_accuracy.value()[0]))
if True == LOG:
train_loss_logger.log(state['epoch'], meter_loss.value()[0])
train_error_logger.log(state['epoch'], meter_accuracy.value()[0])
if 1 == param['dim']:
print('[Epoch %d] Training Loss: %.4f (MSE: %.4f)' % (
state['epoch'], meter_loss.value()[0], 7)) # meter_mse.value()
flog.write('[Epoch %d] Training Loss: %.4f (MSE: %.4f)\n' % (
state['epoch'], meter_loss.value()[0], 7)) # meter_mse.value()
reset_meters()
# iterator
if 'mnist' == param['data']:
engine.test(processor, get_iterator(False))
if 'rt' == param['data']:
engine.test(processor, get_rt_iterator(False))
if True == LOG:
test_loss_logger.log(state['epoch'], meter_loss.value()[0])
if 2 == param['dim']:
test_accuracy_logger.log(state['epoch'], meter_accuracy.value()[0])
confusion_logger.log(confusion_meter.value())
if 1 == param['dim']:
test_accuracy_logger.log(state['epoch'], 7) # meter_mse.value()
if 2 == param['dim']:
print('[Epoch %d] Testing Loss: %.4f (Accuracy: %.2f%%)' % (
state['epoch'], meter_loss.value()[0], meter_accuracy.value()[0]))
flog.write('[Epoch %d] Testing Loss: %.4f (Accuracy: %.2f%%)\n' % (
state['epoch'], meter_loss.value()[0], meter_accuracy.value()[0]))
if 1 == param['dim']:
print('[Epoch %d] Testing Loss: %.4f (MSE: %.4f)' % (
state['epoch'], meter_loss.value()[0], 7)) # meter_mse.value()
flog.write('[Epoch %d] Testing Loss: %.4f (MSE: %.4f)\n' % (
state['epoch'], meter_loss.value()[0], 7)) # meter_mse.value()
if 10 <= state['epoch']: # for heatmap
torch.save(model.state_dict(), save_prefix+'/epoch_%d.pt' % state['epoch'])
print('>> model: saved.')
# prediction:
# model.load_state_dict(torch.load(PATH))
# pred_data = Variable(torch.FloatTensor(RTtest.X)[:,None,:,:])
PRED_BATCH = 16 # 1000 # 16 for heatmap
if PRED_BATCH > 0:
'''
solve memory problem using batch
'''
if False == CNN_EMB:
pred = np.array([])
# TODO: handle int
pred_batch_number = int(RTtest.X.shape[0] / PRED_BATCH)+1
for bi in range(pred_batch_number):
test_batch = Variable(torch.FloatTensor(RTtest.X[bi*PRED_BATCH:(bi+1)*PRED_BATCH,:,:])[:,None,:,:])
test_batch = test_batch.cuda()
pred_batch = model(test_batch)
pred = np.append(pred, pred_batch[0].data.cpu().numpy().flatten())
# print('>>dim: pred', pred.shape)
if True == DATA_AUGMENTATION:
''' data augmentation:'''
pep_num = int(len(pred) / 2)
pred = pred[:pep_num]*0.5 + pred[pep_num:]*0.5
obse = RTtest.y[:pep_num]
pearson = Pearson(pred,obse)
spearman = Spearman(pred,obse)
else:
pearson = Pearson(pred,RTtest.y)
spearman = Spearman(pred,RTtest.y)
if True == CNN_EMB:
pred = np.array([])
# TODO: handle int
pred_batch_number = int(corpus.test.shape[0] / PRED_BATCH)+1
for bi in range(pred_batch_number):
test_batch = Variable(corpus.test[bi*PRED_BATCH:(bi+1)*PRED_BATCH,:])
test_batch = test_batch.cuda()
pred_batch = model(test_batch)
pred = np.append(pred, pred_batch[0].data.cpu().numpy().flatten())
# print('>>dim: pred', pred.shape)
obse = corpus.test_label.numpy().flatten()
pearson = Pearson(pred,obse)
spearman = Spearman(pred,obse)
else:
pred_data = Variable(torch.FloatTensor(RTtest.X)[:,None,:,:])
if True == CUDA:
pred_data = pred_data.cuda()
pred = model(pred_data)
if True == CUDA:
# print('>>dim: pred', pred[0].data.cpu().numpy().flatten().shape)
pearson = Pearson(pred[0].data.cpu().numpy().flatten(),RTtest.y)
spearman = Spearman(pred[0].data.cpu().numpy().flatten(),RTtest.y)
if False == CUDA:
pearson = Pearson(pred[0].data.numpy().flatten(),RTtest.y)
spearman = Spearman(pred[0].data.numpy().flatten(),RTtest.y)
''''''
print('>> Corr on %d testing samples: %.5f | %.5f' % (len(pred), pearson, spearman))
flog.write('>> Corr on %d testing samples: %.5f | %.5f\n' % (len(pred), pearson, spearman))
# writing:
if True == CNN_EMB:
obse = corpus.test_label.numpy().flatten()
if False == CNN_EMB:
obse = RTtest.y
with open(result_path, 'w') as fo:
fo.write('observed\tpredicted\n')
for i in range(len(pred)):
fo.write('%.5f\t%.5f\n' % (obse[i],pred[i]))
# writing done
# Reconstruction visualization.
if 2 == param['dim']:
# iterator
if 'mnist' == param['data']:
test_sample = next(iter(get_iterator(False)))
if 'rt' == param['data']:
test_sample = next(iter(get_rt_iterator(False)))
# print('>>dim: test_sample', test_sample) # [batch, 28, 28]
ground_truth = (test_sample[0].unsqueeze(1).float() / 255.0)
# print('>>dim: ground_truth', ground_truth.shape) # torch.FloatTensor of size batch x 1 x 28 x 28
if True == CUDA:
pred, reconstructions = model(Variable(ground_truth).cuda())
if False == CUDA:
pred, reconstructions = model(Variable(ground_truth))
# print('>>dim: pred', pred)
reconstruction = reconstructions.cpu().view_as(ground_truth).data
if True == LOG:
ground_truth_logger.log(
make_grid(ground_truth, nrow=int(BATCH_SIZE ** 0.5), normalize=True, range=(0, 1)).numpy())
reconstruction_logger.log(
make_grid(reconstruction, nrow=int(BATCH_SIZE ** 0.5), normalize=True, range=(0, 1)).numpy())
# def on_start(state):
# state['epoch'] = 327
#
# engine.hooks['on_start'] = on_start
engine.hooks['on_sample'] = on_sample
engine.hooks['on_forward'] = on_forward
engine.hooks['on_start_epoch'] = on_start_epoch
engine.hooks['on_end_epoch'] = on_end_epoch
if 'mnist' == param['data']:
engine.train(processor, get_iterator(True), maxepoch=NUM_EPOCHS, optimizer=optimizer)
if 'rt' == param['data']:
engine.train(processor, get_rt_iterator(True), maxepoch=NUM_EPOCHS, optimizer=optimizer)
T2 = timeit.default_timer()
print('>> time: %.5f min\n' %((T2-T1)/60.))
flog.write('>> time: %.5f min\n' %((T2-T1)/60.))
flog.close()