forked from bmaltais/kohya_ss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_locon.py
106 lines (96 loc) · 3.21 KB
/
extract_locon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#
# From: https://raw.githubusercontent.com/KohakuBlueleaf/LoCon/main/extract_locon.py
#
import argparse
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"base_model", help="The model which use it to train the dreambooth model",
default='', type=str
)
parser.add_argument(
"db_model", help="the dreambooth model you want to extract the locon",
default='', type=str
)
parser.add_argument(
"output_name", help="the output model",
default='./out.pt', type=str
)
parser.add_argument(
"--is_v2", help="Your base/db model is sd v2 or not",
default=False, action="store_true"
)
parser.add_argument(
"--device", help="Which device you want to use to extract the locon",
default='cpu', type=str
)
parser.add_argument(
"--mode",
help=(
'extraction mode, can be "fixed", "threshold", "ratio", "percentile". '
'If not "fixed", network_dim and conv_dim will be ignored'
),
default='fixed', type=str
)
parser.add_argument(
"--linear_dim", help="network dim for linear layer in fixed mode",
default=1, type=int
)
parser.add_argument(
"--conv_dim", help="network dim for conv layer in fixed mode",
default=1, type=int
)
parser.add_argument(
"--linear_threshold", help="singular value threshold for linear layer in threshold mode",
default=0., type=float
)
parser.add_argument(
"--conv_threshold", help="singular value threshold for conv layer in threshold mode",
default=0., type=float
)
parser.add_argument(
"--linear_ratio", help="singular ratio for linear layer in ratio mode",
default=0., type=float
)
parser.add_argument(
"--conv_ratio", help="singular ratio for conv layer in ratio mode",
default=0., type=float
)
parser.add_argument(
"--linear_percentile", help="singular value percentile for linear layer percentile mode",
default=1., type=float
)
parser.add_argument(
"--conv_percentile", help="singular value percentile for conv layer percentile mode",
default=1., type=float
)
return parser.parse_args()
ARGS = get_args()
from locon.utils import extract_diff
from locon.kohya_model_utils import load_models_from_stable_diffusion_checkpoint
import torch
def main():
args = ARGS
base = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.base_model)
db = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.db_model)
linear_mode_param = {
'fixed': args.linear_dim,
'threshold': args.linear_threshold,
'ratio': args.linear_ratio,
'percentile': args.linear_percentile,
}[args.mode]
conv_mode_param = {
'fixed': args.conv_dim,
'threshold': args.conv_threshold,
'ratio': args.conv_ratio,
'percentile': args.conv_percentile,
}[args.mode]
state_dict = extract_diff(
base, db,
args.mode,
linear_mode_param, conv_mode_param,
args.device
)
torch.save(state_dict, args.output_name)
if __name__ == '__main__':
main()