forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer.py
53 lines (42 loc) · 1.75 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from collections import defaultdict
required = object()
class Optimizer(object):
def __init__(self, params, defaults):
self.state = defaultdict(dict)
self.param_groups = list(params)
if not isinstance(self.param_groups[0], dict):
self.param_groups = [{'params': self.param_groups}]
param_set = set()
for group in self.param_groups:
group['params'] = list(group['params'])
group_set = set(group['params'])
if not param_set.isdisjoint(group_set):
raise ValueError("some parameters appear in more than one "
"parameter group")
param_set.update(group_set)
for name, default in defaults.items():
for i, group in enumerate(self.param_groups):
if default is required and name not in group:
raise ValueError("parameter group " + str(i) + " didn't "
"specify a value of required optimization parameter "
+ name)
else:
group.setdefault(name, default)
for group in self.param_groups:
for param in group['params']:
if not param.requires_grad:
raise ValueError("optimizing a parameter that doesn't "
"require gradients")
def __getstate__(self):
return {
'state': self.state,
'param_groups': self.param_groups,
}
def state_dict(self):
return self.__getstate__()
def zero_grad(self):
for group in self.param_groups:
for param in group['params']:
param.grad.zero_()
def step(self, forward_closure):
raise NotImplementedError