This repository was archived by the owner on Mar 3, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
152 lines (113 loc) · 4.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# -*- coding: utf-8 -*-
from __future__ import print_function, division
import os
import time
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torchvision import datasets, transforms
from model import PCBModel
from test import test
import utils
# ---------------------- Settings ----------------------
parser = argparse.ArgumentParser(description='Training arguments')
parser.add_argument('--save_path', type=str, default='./model')
parser.add_argument('--dataset', type=str, default='market1501',
choices=['market1501', 'cuhk03', 'duke'])
parser.add_argument('--batch_size', default=64, type=int, help='batch_size')
parser.add_argument('--learning_rate', default=0.1, type=float,
help='FC params learning rate')
parser.add_argument('--epochs', default=60, type=int,
help='The number of epochs to train')
parser.add_argument('--share_conv', action='store_true')
parser.add_argument('--stripes', type=int, default=6)
arg = parser.parse_args()
# Fix random seed
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
# Make saving directory
save_dir_path = os.path.join(arg.save_path, arg.dataset)
os.makedirs(save_dir_path, exist_ok=True)
# ---------------------- Train function ----------------------
def train(model, criterion, optimizer, scheduler, dataloader, num_epochs, device):
start_time = time.time()
# Logger instance
logger = utils.Logger(save_dir_path)
logger.info('-' * 10)
logger.info(vars(arg))
for epoch in range(num_epochs):
logger.info('Epoch {}/{}'.format(epoch + 1, num_epochs))
model.train()
scheduler.step()
# Training
running_loss = 0.0
batch_num = 0
for inputs, labels in dataloader:
batch_num += 1
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
# with torch.set_grad_enabled(True):
outputs = model(inputs)
# Sum up the stripe softmax loss
loss = 0
for logits in outputs:
stripe_loss = criterion(logits, labels)
loss += stripe_loss
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(dataloader.dataset.imgs)
logger.info('Training Loss: {:.4f}'.format(epoch_loss))
# Save result to logger
logger.x_epoch_loss.append(epoch + 1)
logger.y_train_loss.append(epoch_loss)
if (epoch + 1) % 10 == 0 or epoch + 1 == num_epochs:
# Testing / Validating
torch.cuda.empty_cache()
model.set_return_features(True)
CMC, mAP, _ = test(model, arg.dataset, 512)
model.set_return_features(False)
logger.info('Testing: top1:%.2f top5:%.2f top10:%.2f mAP:%.2f' %
(CMC[0], CMC[4], CMC[9], mAP))
logger.x_epoch_test.append(epoch + 1)
logger.y_test['top1'].append(CMC[0])
logger.y_test['mAP'].append(mAP)
if epoch + 1 != num_epochs:
utils.save_network(model, save_dir_path, str(epoch + 1))
logger.info('-' * 10)
# Save the loss curve
logger.save_curve()
time_elapsed = time.time() - start_time
logger.info('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
# Save final model weights
utils.save_network(model, save_dir_path, 'final')
# For debugging
# inputs, classes = next(iter(dataloaders['train']))
# ---------------------- Training settings ----------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_dataloader = utils.getDataLoader(
arg.dataset, arg.batch_size, 'train', shuffle=True, augment=True)
model = PCBModel(num_classes=len(train_dataloader.dataset.classes),
num_stripes=arg.stripes, share_conv=arg.share_conv, return_features=False)
criterion = nn.CrossEntropyLoss()
# Finetune the net
optimizer = optim.SGD([
{'params': model.backbone.parameters(), 'lr': arg.learning_rate / 10},
{'params': model.local_conv.parameters() if arg.share_conv else model.local_conv_list.parameters(),
'lr': arg.learning_rate},
{'params': model.fc_list.parameters(), 'lr': arg.learning_rate}
], momentum=0.9, weight_decay=5e-4, nesterov=True)
scheduler = lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1)
# Use multiple GPUs
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model = model.to(device)
# ---------------------- Start training ----------------------
train(model, criterion, optimizer, scheduler, train_dataloader,
arg.epochs, device)
torch.cuda.empty_cache()