forked from graspnet/anygrasp_sdk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
executable file
·74 lines (61 loc) · 2.57 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import argparse
import torch
import numpy as np
import open3d as o3d
from PIL import Image
from gsnet import AnyGrasp
from graspnetAPI import GraspGroup
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, help='Model checkpoint path')
parser.add_argument('--max_gripper_width', type=float, default=0.1, help='Maximum gripper width (<=0.1m)')
parser.add_argument('--gripper_height', type=float, default=0.03, help='Gripper height')
parser.add_argument('--top_down_grasp', action='store_true', help='Output top-down grasps.')
parser.add_argument('--debug', action='store_true', help='Enable debug mode')
cfgs = parser.parse_args()
cfgs.max_gripper_width = max(0, min(0.1, cfgs.max_gripper_width))
def demo(data_dir):
anygrasp = AnyGrasp(cfgs)
anygrasp.load_net()
# get data
colors = np.array(Image.open(os.path.join(data_dir, 'color.png')), dtype=np.float32) / 255.0
depths = np.array(Image.open(os.path.join(data_dir, 'depth.png')))
# get camera intrinsics
fx, fy = 927.17, 927.37
cx, cy = 651.32, 349.62
scale = 1000.0
# set workspace to filter output grasps
xmin, xmax = -0.19, 0.12
ymin, ymax = 0.02, 0.15
zmin, zmax = 0.0, 1.0
lims = [xmin, xmax, ymin, ymax, zmin, zmax]
# get point cloud
xmap, ymap = np.arange(depths.shape[1]), np.arange(depths.shape[0])
xmap, ymap = np.meshgrid(xmap, ymap)
points_z = depths / scale
points_x = (xmap - cx) / fx * points_z
points_y = (ymap - cy) / fy * points_z
# set your workspace to crop point cloud
mask = (points_z > 0) & (points_z < 1)
points = np.stack([points_x, points_y, points_z], axis=-1)
points = points[mask].astype(np.float32)
colors = colors[mask].astype(np.float32)
print(points.min(axis=0), points.max(axis=0))
gg, cloud = anygrasp.get_grasp(points, colors, lims=lims, apply_object_mask=True, dense_grasp=False, collision_detection=True)
if len(gg) == 0:
print('No Grasp detected after collision detection!')
gg = gg.nms().sort_by_score()
gg_pick = gg[0:20]
print(gg_pick.scores)
print('grasp score:', gg_pick[0].score)
# visualization
if cfgs.debug:
trans_mat = np.array([[1,0,0,0],[0,1,0,0],[0,0,-1,0],[0,0,0,1]])
cloud.transform(trans_mat)
grippers = gg.to_open3d_geometry_list()
for gripper in grippers:
gripper.transform(trans_mat)
o3d.visualization.draw_geometries([*grippers, cloud])
o3d.visualization.draw_geometries([grippers[0], cloud])
if __name__ == '__main__':
demo('./example_data/')