Skip to content

Latest commit

 

History

History
31 lines (22 loc) · 767 Bytes

README.md

File metadata and controls

31 lines (22 loc) · 767 Bytes

Compression with Flows via Local Bits-Back Coding

Jonathan Ho, Evan Lohn, Pieter Abbeel

Neural Information Processing Systems, 2019

https://arxiv.org/abs/1905.08500

Contains a PyTorch implementation of Flow++.

Models available here.

Dependencies

  • Python 3.6.7
  • PyTorch 1.1.0 (CUDA 10.0)

Installation instructions

  1. Install Anaconda with Python 3.6.7
  2. conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
  3. pip install tqdm
  4. Extract this codebase into a directory called compression
  5. Build the underlying C++ library (need a compiler with OpenMP support):
cd compression/ans
mkdir build
cd build
cmake ..
make